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Introduction 
This report consists principally of five research papers that cover 
the extent of the Intelligent Room Project carried out at the 
Artificial Intelligence Laboratory of the Massachusetts Institute of 
Technology.  They cover a five-year period of work, and illustrate 
the evolution of the technologies developed in support of this 
project.  The papers are: 

1. Building Brains for Rooms: Designing Distributed Software Agents, 
by Michael H. Coen 

2. Design Principles for Intelligent Environments, by Michael H. Coen 

3. Learning Spatial Event Models from Multiple-Camera Perspectives, by 
Michael H. Coen and Kevin W. Wilson 

4. A Context Sensitive Natural Language Modality for an Intelligent 
Room, by Michael Coen, Luke Weisman, Kavita Thomas, and Marion Groh 

5. Meeting the Computatonal Needs of Intelligent Environments: The 
Metaglue System, by Michael H. Coen, Brenton Phillips, Nimrod 
Warshawsky, Luke Weisman, Stephen Peters, and Peter Finin 

The first two of these discuss the overall principles of organization 
in the Intelligent Room; the third treats the specific problems of 
the use of visual images in the Room; the fourth deals with 
linguistic interactions with the Room, spoken and written; and the 
last describes the eventual computational infrastructure that binds 
the Room together as a whole. 



Building Brains for Rooms: 
Designing Distributed Software Agents 

Michael H. Coen 

MIT AI Lab 
545 Technology Square 
Cambridge, MA 02139 
mhcoen® ai.mit.edu 

Abstract 
This paper argues that complex, embedded software agent 
systems are best constructed with parallel, layered 
architectures. These systems resemble Minskian Societies of 
Mind and Brooksian subsumption controllers for robots, 
and they demonstrate that complex behaviors can be had via 
the aggregates of relatively simple interacting agents.   We 
illustrate this principle with a distributed software agent 
system that controls the behavior of our laboratory's 
Intelligent Room. 

Introduction 

This paper argues that software agent systems that interact 
with dynamic and complex worlds are best constructed 
with parallel, layered architectures.   We draw on Brooks' 
subsumption architecture (Brooks, 1985) and Minsky's 
Society of Mind (Minsky, 1986) theory to dispel the notion 
that sophisticated and highly capable agent systems need 
elaborately complex and centralized control. 

Towards this end, we present an implemented system of 
software agents that forms the backbone of our 
laboratory's "Intelligent Room" (Torrance, 1995). These 
agents, known collectively as the Scatterbrain , control an 
environment very tenuously analogous to the intelligent 
rooms so familiar to Star Trek viewers — i. e., rooms that 
listen to you and watch what you do; rooms you can speak 
with, gesture to, and interact with in other complex ways. 

The Scatterbrain consists of approximately 20 distinct, 
intercommunicating software agents that run on ten 
different networked workstations.   These agents' primary 
task is to link various components of the room (e. g., 
tracking cameras, speech recognition systems) and to 
connect them to internal and external stores of information 
(e. g., a person locator, the World Wide Web). Although an 

' Copyright © 1997, American Association for Artificial Intelligence 
(www. aaai. org). All rights reserved. 
' This material is based upon work supported by the Advanced Research 

Projects Agency of the Department of Defense under contract number 
F30602— 94— C— 0204, monitored through Rome Laboratory and 
Griffiss Air Force Base. 

individual agent may in fact perform a good deal of 
computation, we will focus our interest on the ways in 
which agents get connected and share information rather 
than how they internally manipulate their own data.   And 
while the Intelligent Room is a fascinating project in itself, 
we will treat it here mainly as a test-bed to learn more 
about how software agents can interact with other 
computational and real entities. 

Our approach has also been modeled on a somewhat 
unorthodox combination of the Brooks (Brooks. 1991) and 
Minsky approaches to core AI research. As pointed out in 

(Kautz et. al., 1994), it is difficult to find specific tasks for 
individual agents that are both feasible and useful given 
current technology.    Many of the non-trivial tasks'we 
would like software agents to perform are simply beyond 
the current state of the art. However, taking our cue from 
Minsky, we realize interesting and complex behaviors can 
be had via the aggregates of simpler ones: groups of simple 
agents can be combined to do interesting things. We also 
found Brooks' subsumption architecture useful for guiding 
the creation of the Scatterbrain, particularly for building 
parallel layers of behaviors that allow the room to process 
multiple events simultaneously and to change contexts 
quickly.     In many ways, the room is similar to a 
disembodied robot, so it comes as no surprise that the 
robotics community can provide insight into how the 
room's brain should be designed. We argue, however, that 
this does not preclude insights obtained in creating the 
Scatterbrain from applying to other distributed software 
agents systems.    Rather, as argued by Etzioni (Etzioni, 
1994, 1996; Etzioni et al. 1994), even agents who solely 
interact with the online world (and don't have cameras for 
eyes and microphones for ears) can be viewed as a kind of 
simulated, virtual robot.     More important than its 
connection with the real world, what the Scatterbrain 
shares with Brooks' robots is its organizational structure 
and its lack of central processing; all of the Scatterbrain's 
agents work together in parallel with different inputs and 
data being processed simultaneously in different places. 

The next section of this paper describes the Intelligent 
Room's physical infrastructure.   After this, we introduce 
the room's most recent application, a Tour Guide agent 
that helps a person present our lab's research to visitors. 



Next, we present in detail the room's software agent 
architecture, including the design and implementation of 
several components of the Scatterbrain and Tour Guide 
agents. We also contrast our approach with several earlier 
monolithic efforts taken in our lab to program and control 
the behavior of the Intelligent Room. 

Part of the motivation for this work has been to push the 
envelope of software agent design. Much has been made 
over the lack of obvious " killer applications" for software 
agents. After all, how many automated meeting schedulers 
does the world need?    We are interested in exploring new 
realms of complex interactions for software agents which 
in and of themselves constitute these " killer apps" that 
have been seemingly so elusive from the single-agent 
perspective. Minsky argues that societies of agents can do 
things that seem inordinately complex when their behavior 
is viewed as the work of a single entity. Our experiments 
with fairly large assemblies of software agents mark an 
early attempt towards establishing that this is indeed the 
case. 

The Intelligent Room 
The Intelligent Room project explores new forms of 
interaction and collaboration between people and 
computers.     Our objective is to create a new kind of 
environment capable of interpreting and contributing to 
activity within it.   On a grand scale, we are examining a 
paradigmatic shift in what it means to use a computer. 
Rather than view a computer as a box with a keyboard and 
monitor used for traditional computational tasks, we 
envision computers being embedded in the environment 
and   assisting   with   ordinary,   traditionally non- 
computational activity. For example, if I lose my keys in 
the Intelligent Room, I'd someday simply like to ask the 
room where I left them. 

The Intelligent Room is an excellent environment in 
which to conduct core AI research according to the criteria 
of both Brooks (Brooks, 1991) and Etzioni (Etzioni, 1994), 
The room is " physically" grounded in the real-world. The 
room's cameras and microphones allow it to deal allow it 
to deal with the kinds of complex, unpredictable and 
genuine phenomena that Brook's argues is essential for a 
core AI research testbed.     However, the room also 
processes abstract, symbolic information that actually 
represents something extant, thereby satisfying Etzioni's 
desiderata. For example, if a person asks the room, What 
is the weather in Boston?, the room needs to recognize 
more than a meaningless weather token ~ it needs to get 
that information and display it to the user.   This is done 
using a variety of information retrieval systems available 
on the World Wide Web. 

This    section    first   describes    the   room's    physical 
infrastructure. We then present the room's most recent 
application, a Tour Guide agent that helps a person present 
our lab's research to visitors.   In the next section, we 
discuss in detail the room's software agent architecture, 
including the design and implementation of the 

Scatterbrain and Tour Guide agents. 

Infrastructure - From the bottom up 
Figure 1 diagrams the room's physical layout. The 
Intelligent Room's infrastructure consists of several 
hardware and software systems that allow the room to 
observe and control its environment in real-time.  The 
positions of people in the room are determined using a 
multi-person tracking system. Hand pointing actions are 
recognized by two separate gesture recognition systems. 
The one used in the application described below allows the 
room to determine where someone is pointing on either of 
two images projected on a room wall from high-intensity, 
ceiling mounted VGA projectors. A speech recognition 
system developed by (Zue, 1994) allows the room to listen 
to its inhabitants, and it is used in conjunction with a 
speech generator to enable to the room to engage in 
sustained dialogues with people. The room interfaces with 
the START natural-language information retrieval system 
(Katz, 1990) to enhance its ability to understand complex 
linguistic input.   The room also controls two VCRs and 
several other video displays in addition to the ceiling 
mounted projectors.    A matrix switcher allows arbitrary 
connections between the room's audio/ visual inputs and 
outputs. 

The room's hardware systems are directly interfaced 
with low-level C programs to insure their real-time 
operation. For example, the room's tracking cameras have 
30 Hz frame rates and their data streams need to be 
synchronously processed using direct operating system 
calls. 

Figure 1 - Intelligent Room Floor Plan 

The Tour Guide Agent 
The room's most recent application provides support for 
someone giving tours of our laboratory.    These tours 
typically involve a group of visitors meeting with a 
graduate student who discusses and answers questions 
about the lab's research and shows several video clips. 
Rather than have these presentations given in an ordinary 



Conference room, we have decided to have them in the 
Intelligent Room so the room can assist the human tour 
guide.   A typical dialogue between the room and student 
tour guide is: 

Tour guide :   Computer, load the AI Lab tour 
Room :   / am loading the AI Lab tour. Right projector now 
displays a Netscape browser window with a special Lab Tour 
home page 
Tour guide : Using hand, points at link to a research project 
displayed on the wall and says, Computer, follow this link 
Room :   Loads the indicated page into the browser. 
Tour guide :   Computer, show me the Intelligent Room home 
page. 
Room :   Loads the URL corresponding to the name of the page . 
Then says , / have a video clip for this research.  Would you like 
to see it? 
Tour guide :   Computer, yes. 
Room :   Moves appropriate video casettetape to correct position 
and starts the clip playing on left projector. 
Tour guide: (watches video for a few seonds) Computer, stop the 
video. Computer, play the Virtual Surgery clip. 
Room :   Performs requested action. Stops video when clip is done. 
Tour guide :   Computer, how many graduate students are there at 
the AI Lab? 
Room:   I am asking the START system for the answer ...  The 
Laboratory's 178 members include 17faculty members, 26 
academic staff, 29 research and support staff, and 106 graduate 
students. Also displays web page with elaborated answer. 

Other applications include a control center for planning 
huricane disaster relief and an intelligent living room. 

Control Architectures 

The room has been discussed so far at its most concrete 
and most abstract: namely, its hardware infrastructure and 
its high-level software applications. How these applications 
are actually created on top of this infrastructure, i. e., how 
the room actually works, is the subject of this section. 

Monolithic Control 
In its early stages of development, each of the room's 
components was wrapped inside a TCP client or server that 
connected with a monolithic C-language program that 
controlled the room's behavior.    Figure 2 contains this 
controller along with each of the programs it connected 
with. (Included in parentheses with each component is the 
name of the workstation it ran on.) 

From a conceptual point of view, the most serious flaw 
with   the  centralized  controller  was   that   it  failed   to 
distinguish between basic functioning common to all room 
contexts - such as noticing when someone came through 
the doorway - and unique activities associated with a 
particular room application. Furthermore, adding new 
functionality    to    the    room    required    modifying    the 
monolithic   controller   and   manually   determining   the 
interactions and conflicts between old and new room 

Zue Client       SpeechOut Netscape        Pointing 
(love-bug)              (oat-bran) (tesierosa)           (big-bang) 

Zue Server 

(general-lee) Enhanced Reality 

Big Messy (tesierosa) 

X-Control                 C Program 

(tesierosa)                       (outer-space) 

VideoMux 

START (wonderbug) 

(sakharov) Tracking VCR 

(brave-heart, diablo. &. raphael) (wonderbug) 

Figure 2 - The Monolithic Controller 

functions. There was no way to modularly add new room 
capabilities on top of old ones and assume everything 
would continue working as expected. 

Also, directing the information flow among the room's 
various components -one of the main functions of the 
controller - was overly difficult in a language like C. We 
needed higher-level mechanisms for describing how room 
information moved among its producers and consumers. 

From a practical point of view, the monolithic controller 
also made it difficult to reconfigure the room dynamically 
or restart pieces of the room independently of others. We 
often found while working on the room that in order to 
restart one component, it was necessary to restart the entire 
room. This was particularly frustrating because starting the 
room required the coordinated activity of several people to 
start particular programs (in a predetermined order) and 
configure various room hardware. It was also difficult to 

move components of the room to different workstations 
because that required modifying hard-coded machine 
dependencies in the code. 

SodaBot 
Although we managed to use the monolithic approach 

for several very simple applications, it seemed unlikely to 
scale to the more complex interactions we had in mind for 
the room. Our initial dissatisfaction with this architecture 
led to the adoption of the SodaBot software agent platform 
(Coen, 1994) for duplicating the functionality of our initial 
monolithic room controller with a system of distributed 
software agents. 
SodaBot provides both a programming language and 
runtime platform for software agents, and it simplifies 
writing interactive programs by providing high-level 
primitives for directing flows of online information.    For 
example, it provides mechanisms for writing agent- 
wrappers that interface with preexisting software either via 
text-based or graphical user interfaces (X-windows and 
Windows 95/ NT). 
For example, we created a SodaBot Netscape Agent that 

controls interactions with a Netscape browser.    It offers 
functions to other agents such as those listed below. 



Function 
New (host) 
Load( url) 
Page_ watch() 

LaserPointing 

Link_ watch() 

Text 
Page( direction) 

Purpose 
Runs a new browser on given host 
Loads URL in browser 
Arranges for notification (of URL) to 
another agent whenever browser loads new 

page 
Arranges for notification to another agent 
when a new page is loaded containing its 
URL/ anchor text pairs 
Returns text of current page 
Moves   browser   scroll-bar   in   given 
direction 

For the Intelligent Room, we use SodaBot agents as 
computational glue for interconnecting all of the room's 
components and moving information among them. 
Initially, we simply duplicated the room's monolithic 
controller using SodaBot's high-level programming 
language. Most notably, SodaBot simplified description of 
room functioning and interaction with remote TCP-based 
clients and servers by removing networking and hardware 
details.   However, this new room controller, dubbed the 
Brain, was still a computational bottleneck, and we had yet 
to distinguish between a general behavioral infrastructure 
for the room (i. e. its core functionality) and the more 
complex, application specific interactions we built on top 
of it.   This led to the development of the room's current 
control system, the Scatterbrain, which is the subject of the 
next section. 

Distributed Room Control 
The Scatterbrain (Figure 3) is platform on top of which 
room applications can be layered. In the figure, each circle 
represents a distinct SodaBot software agent that is 
wrapped around and interfaced with an external 
application. (The layer containing these " base applications" 
is not shown.)     Each of the Scatterbrain agents is 
responsible for a different room function. For example, the 
Speechln Agent, runs and interfaces with our speech 
recognition systems. Once started, Speechln allows other 
agents to submit context-free grammars corresponding to 
spoken utterances they are interested in.    As they do, it 
updates the speech recognition systems to contain the 
current set of valid utterances. When a sentence is heard 
by one of the speech systems, Speechln then notifies those 
agents who indicated they were interested in it. As another 
example, the Netscape Agent connects to the Display Agent 
to make sure that when web pages are loaded, the browser 
is actually displayed somewhere in the room where people 
can see. 

The   Scatterbrain agents are distributed among 10 
different workstations and rely on SodaBot interagent 
communication primitives to locate and communicate with 
each other.    The lines in the figure represent default 
interactions the room manifests in all applications, such as 
having various agents connect with the speech recognition 
agents and making sure the tracking system notices when 
them connect to non-displayed external applications. The 

someone comes in the room. Essentially, the Scatterbrain 
implements the Intelligent Room's reflexes. 

Speechln        SpeechOut     Netscape 

Tracking 

Summit 

Dragon Display 

FingerPointing 

VideoMux      VCR   X-Control    SGI Setup      EnhancedReality 

Figure 3 - The Agents of the Scatterbrain 

The room no longer has a central controller.    A small 
startup agent runs all of the Scatterbrain agents which then 
autonomously move to the machines on which they are 
supposed to run.    All the Scatterbrain agents then work 
together in parallel with different inputs and data being 
processed simultaneously in different places. This makes 
the room robust to failure in one of its sub-systems and 
allows us to restart sections of the room independently. 
Also, the SodaBot system allows real-time data 
connections between agents to be broken and resumed 
invisibly. For example, if the Tracking Agent is updating 
another agent in real-time, either one of them can be 
stopped and restarted and they will be automatically 
reconnected. 

Layered on top of the Scatterbrain, we created higher- 
level agents that rely on the Scatterbrain's underlying 
behaviors.     Figure 4 contains the room's intermediate 
information-level applications such as a Weather Agent 
that can obtain forecasts and satellite maps for particular 
places. By relying on the previously described interaction, 
if the Weather Agent uses the Netscape Agent to display 
information, it doesn't need to be concerned with insuring 
the browser is displayed in a place where the user is 
looking. 

Weather 

START 

Interface 

Slides 

Storm 

Interface 

Speechln       SpeechOut     Netscape LaserPointing    Tracking 

Summit FingerPointing 

Dragon                        Display 

VideoMux       VCR  X-Control SGI Setup      Enhanced Reality 

Figure 4 - Information Agents 
We then created specific room application agents that 

relied on the lower-level, general-purpose agents in the 
room.   Figure 5 contains a diagram of several room 
applications and how they connect to the room's 
underlying architecture. Note that all of the objects in the 
figure represent SodaBot software agents and many of 
called the X-Server that controls the actual SGI workstation 



next section explores two of the application agent 
interactions in more detail. 

Disaster Relief    Talk Web 

Scenario    Presentation    Surfer 

START        Slides 

Weather Interface Storm 

Interface 

Speechln       SpeechOut     Netscape       LaserPointing   Tracking 

FingerPointing 
Summit 

Dragon Display 
Enhanced 

VideoMux      VCR   X-Control     SGI Setup       Reality 

Figure 5 - Intelligent Room Software Agents 

Agent Interaction 
This section examines how we can get the room to exhibit 
interesting behavior by layering agents on top of each 
other. We examine two separate room behaviors and then 
discuss how they combine to produce greater functionality. 

We have a system in the room called Storm , used in a 
disaster relief planning scenario, that can display scalable 
maps of the Caribbean.    People can interact with Storm 
using pointing and speech. For example, 

User :   Computer, display Storm on the left projector. 
(User now points at Puerto Rico. 
User :   Computer, zoom in. 
(User now points at San Juan.) 
User :   Computer, what is the weather here ? 
(The room then displays a weather forecast for San Juan 
inside a Netscape browser on the other projector.) 
To see how this scenario works, we first examine pointing 
recognition as an example of simple agent interaction. We 
then look at a more complex scenario from the Tour Guide 
agent presented earlier. 

By default, the room's projectors are set by the Display 
Agent to show portions of the screens of two of our SGI 
workstations. If someone points someplace close to one of 
these projected displays, the display's mouse cursor moves 

to that position. Although this seems like a trivial process, 
there is a fair amount of effort behind it, as shown in 
Figure 6. The person moving his finger is reflected in the 
camera images received by the neural network pointing 
software.   This reconciles the images to produce new 
pointing information.   These new data are passed to the 
FingerPointing Agent which is responsible for handling all 
such events in the room. By default, the Scatterbrain has 
all pointing events on the each display sent to an agent 

generating the display.    This X-Server agent then moves 
the mouse cursor to the appropriate position, which is 
reflected in the displayed image.      However, the Storm 
Agent overrides this default behavior and redirects 
pointing events on the Storm display to itself. Upon receipt 
of a pointing event, it updates the Storm application's 
internal cursor, which moves intelligently between salient 
geographical features.    For example, pointing near San 
Juan will cause the Storm program to register the city with 
the Storm Agent, rather than a point three pixels to its left. 
Finally, note that the various agents are responsible for 
translating between the room's many coordinate systems, 
as shown alone the connections. 

Display 

(x'.y') 
FingerPointing 

Storm (screen#. x. y) 
Storm Interface 

Program Pointing 
Neural 

Net 

X-Control 

(x".y") 

VideoMux 

VideoMux 

Figure 6 - Pointing in the Room 
When someone in the room says What's the weather here?, 
the Speechln Agent notifies the room's Disaster Relief 
Planning Agent because this utterance is contained in the 
grammar that agent had registered when first run. The 
Storm Agent is then contacted to determine what 
geographical entity is closest to where the person was 
pointing close to the time they asked the question. (Low- 
level room events are time-stamped by agents in order to 
facilitate multimodal reconciliation.)    This process is 
shown in Figure 7. 

Disaster Relief 

Scenario 

Storm tscreen», x. yiFingerPointing X-Control 
Interface Pointing <x". y") 

Neural 

Net 

Speechln 

' What's the weather here?" VideoMux 

Figure 7 - Multimodal Resolution 



Disaster Relief 
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Netscape 
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START 

Interface 
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Speechln 

SpeechOut 
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Figure 8 - Loading Weather in Browser 

When the Disaster Relief Agent is told what region's 
weather is being queried, the Weather Agent is then asked 
to display the requisite information.   After consultation 
with the START Agent to find an appropriate URL which 
contains this information, it asks the Netscape Agent to 
load the given page as shown in Figure 8, which also 
displays the complete agent interaction for handling the 
user's question. 

A separate interaction from the Tour Guide Agent 
presented earlier is shown in Figure 9.   Here's someone 
asks the room to load a particular web page, e. g., 
Computer, load the Intelligent Room home page. 

Netscape 

Web 

Surfer 

VCR 
Display 

START 

Interface 

Speechln 

SpeechOut 

"Load the Intelligent 
Room Home Page" 

VideoMux 

VideoMux 

Figure 9 - Video Notification 

After the Netscape Agent receives this request from the 
Speechln Agent, it loads the URL in the netscape browser. 
Whenever the Netscape Agent loads a new page, it also 
notifies the Web Surfer Agent that it is doing so. The Web 
Surfer Agent consults with the Start Agent to check if it 

has any additional information about the content of the 
newly loaded web page.' In this case, it announces that it 
has a relevant video. If the user indicates he wants to see 
the clip, the VCR agent announces that it is cueing to the 
appropriate tape position and then plays the segment. 

The Scatterbrain architecture combines these two 
behaviors to allow the room, for example, to notify us if 
we have additional information about things being 
referenced during other interactions.  For example, the 
room can volunteer to show video clips about San Juan 
when a person asks for the weather there.   This entire 
interaction is contained in Figure 10, which simply 
overlaps Figures 8 and 9. 
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Scenario Web     VCR 
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START 
Interface 

Weather 
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(x'.y') 

Storm (screen*, x, y) X-Control 

Interface Pointing 

Neural Net 

(x".y") 

Speechln 
SpeechOut 

"What's the wea ther here?" 

VideoMux 

VideoMux 

Figure 10 - Combining Behaviors 

One of our primary interests is making the room an 
active partner in applications rather than a passive servant 
that simply responds to explicit commands.   The video- 
notify behavior discussed here is an early effort towards 
this. By layering behaviors on top of the Scatterbrain that 
are indirectly triggered by room activity rather than by 
direct user instruction, the room can autonomously become 
involved in its ongoing activities and thereby appear more 
spontaneous and intelligent to users. 

Note that although the Scatterbrain is not actually a 
subsumption system, the influence of subsumption 
architecture is clear.  The room is controlled by multiple 
layers of behaviors in which higher-level agents rely on the 
activity of lower-level ones.    When appropriate, these 
higher-level agents can also override the specific behaviors 
of other agents. The Scatterbrain architecture also supports 
combination of agent behaviors to get enhanced 
functionality. 

' Note that this information is not contained within the page 

itself. 



Conclusion 

Motivated by Minsky's Society of Mind and Brooks' 
subsumption approach to building robots, we have argued 
that software agent systems that interact with complex and 
dynamic worlds are best created   from distributed 
collections    of   simple    agents    with    parallel,    layered 
architectures. 

The complexity of the overall system comes from the 
interactions of these agents, even though no individual 
agent is in itself particularly complex and no single agent 
centralizes the system's control. This approach allows us 
to build robust, reusable, and behaviorally sophisticated 
systems that are capable of interacting with the ever- 
changing real and online worlds.    To demonstrate this 
approach, we presented the Scatterbrain - a distributed 
collection of software agents that control our laboratory's 
Intelligent Room. 
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Abstract 
This paper describes design criteria for creating highly 
embedded, interactive spaces that we call Intelligent 
Environments. The motivation for building these systems 
is to bring computation into the real, physical world to 
support what is traditionally considered non-computational 
activity. We describe an existing prototype space, known 
as the Intelligent Room, which was created to experiment 
with different forms of natural, multimodal human- 
computer interaction. We discuss design decisions 
encountered while creating the Intelligent Room and how 
the experiences gained during its use have shaped the 
creation of its successor. 

1. Introduction 
This paper describes design criteria for creating highly 
embedded, interactive spaces that we call Intelligent 
Environments (IEs). The motivation for building EEs is to 
bring computation into the real, physical world. The goal 
is to allow computers to participate in activities that have 
never previously involved computation and to allow 
people to interact with computational systems the way 
they would with other people: via gesture, voice, 
movement, and context. 

We describe an existing prototype space, known as the 
Intelligent Room, which is a research platform for 
exploring the design of intelligent environments. The 
Intelligent Room was created to experiment with different 
forms of natural, multimodal human-computer interaction 
(HCI) during what is traditionally considered non- 
computational activity. It is equipped with numerous 
computer vision, speech and gesture recognition systems 
that connect it to what its inhabitants are doing and 
saying. 

Our primary concern here is how IEs should be 
designed and created.     Intelligent environments,  like 
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under contract number F30602—94—C—0204, monitored 
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traditional multimodal user interfaces, are integrations of 
methods and systems from a wide array of subdisciplines 
in the Artificial Intelligence (AI) community. Selecting 
the modal components of an IE requires a careful strategic 
approach because of the a priori assumption that the IE is 
actually going to be embedded in the real-world. In 
particular, there is a need for the use of synergy (Cohen 
[4]) to allow imperfect modalities to reinforce and support 
each other. 

We discuss below the design of our laboratory's 
Intelligent Room and how experiences gained during its 
use have shaped the creation of its successor. Given the 
increasingly widespread interest in highly interactive, 
computational environments (Bobick et al. [3]), (Coen 
[6,7,8]), (Cooperstock et al. [10]), (Lucente et al. [17]), 
we hope these experiences will prove useful to other IE 
designers and implementers in the AI community. 

Some of the earliest work in this area has been done 
wholly outside the AI community. This is primarily due 
to the perception that AI has little to offer in the way of 
robust, ready for the real world systems. We contend that 
Intelligent Environments not only would benefit from AI 
subdisciplines ranging from knowledge representation to 
computer vision, but they would be severely limited 
without them. 

Outline 
Section 2 describes some sample interactions with and 
applications of the Intelligent Room. These range from 
an intelligent command post to a reactive living room. 
Comparison to other HCI paradigms, such as ubiquitous 
computing, and other embedded computational 
environments is contained in section 3. Section 4 presents 
the Intelligent Room's physical infrastructure. Sections 5 
and 6 detail the Intelligent Room's visual and spoken 
language modalities. We document the rationales that 
influenced our approach, system limitations, and solutions 
we are pursuing in the development of the next generation 
Intelligent Room currently under construction in our 
laboratory. 

2. Room Interactions 
Our approach with the Intelligent Room has been to 
create a platform for HCI research that connects with real- 
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world phenomena through several computer vision and 
speech recognition systems. These allow the room to 
watch where people are moving, under certain 
circumstances where they are pointing, and to listen to a 
fairly wide variety of spoken language utterances. 

The Intelligent Room supports a variety of application 
domains. One of these is a command center for planning 
hurricane disaster relief in the Caribbean. This makes use 
of two interactive projected displays that respond to both 
finger pointing and laser pointing gestures. A sample 
interaction with the disaster relief center is: 

User: "Computer, <pause> stay awake. " 
[The room will now listen for utterances without requiring they 
be prefaced by the word Computer.] 
User: "Show me the Virgin Islands. " 
Room: "I'm a showing the map right next to you."    [Room 
shows map on video display closest to the user.] 
User: [now points at St. Thomas.]   "Zoom in.  How far away is 
Hurricane Marilyn ? " 
Room: "The distance between Hurricane Marilyn and the city 
of Charlotte Amalie located in St. Thomas is 145 miles. " 
User:   " Where's the nearest disaster field office ? " 
[Room highlights them on the map.] 
Room: "The St. Thomas disaster field office is located one mile 
outside of Charlotte Amalie. Michael, there is a new weather 
forecast available. Do you want to see it? " 
User: "Yes, show me the satellite image. " 

We are currently developing a next generation of the 
Intelligent Room, called Hal (after the computer in the 
movie, 2001: A space Odyssey). Hal is furnished like a 
combination home/office and supports a wider range of 
activities than the original Intelligent Room. A scenario 
that currently runs within Hal is: 

I walk into Hal and lie down on the sofa after 
shutting the door. Hal   sees   this,   dims   the 
lights, closes the curtains, and then puts on Mozart 
softly in the background. Hal then asks, "Michael, 
what time would you like to get up?" 

The goal of implementing these types of scenarios is to 
explore and help define what an intelligent environment 
should be, what sensory capabilities it needs, and to 
determine what roles such environments could potentially 
play in our lives. In the process, these scenarios provide 
insight into both how AI systems can participate in the 
real world and directions for further research in the 
subdisciplines whose systems contribute to the creation of 
intelligent environments. 

3. Motivation 
Intelligent environments are spaces in which computation 
is seamlessly used to enhance ordinary activity. One of 
the driving forces behind the emerging interest in highly 

interactive environments is to make computers not only 
genuinely user-friendly but also essentially invisible to 
the user. The user-interface primitives of these systems 
are not menus, mice and windows but gesture, speech, 
affect, and context. Their applications are not 
spreadsheets and word processing but intelligent rooms 
and personal assistants. 

Intelligent environments are both embedded and 
multimodal and thereby allow people to interact with 
them in natural ways. By being embedded, we mean 
these systems use cameras for eyes, microphones for ears, 
and ever-increasingly a wide-range of sophisticated 
sensing technologies to connect with real-world 
phenomena. Computer      vision      and      speech 
recognition/understanding technologies can then allow 
these systems to become fluent in natural forms of human 
communication. People speak, gesture, and move around 
when they communicate. For example, by embedding 
user-interfaces this way, the fact that people tend to point 
at what they are speaking about is no longer meaningless 
from a computational viewpoint and we can build systems 
that make use of this information. In some sense, rather 
than make computer-interfaces for people, we want to 
make people-interfaces for computers. 

Coupled with their natural interfaces is the expectation 
that these systems are not only highly interactive (i.e. they 
talk back when spoken to) but also that they are useful for 
ordinary activities. They should enable tasks historically 
outside the normal range of human-computer interaction 
by connecting computers to phenomena (such as someone 
walking into a room) that have traditionally been outside 
the purview of contemporary user-interfaces. 

Why this isn 't Ubiquitous Computing 

Intelligent environments require a highly embedded 
computational infrastructure; they need many connections 
with the real world in order to participate in it. However, 
this does not imply that computation need be everywhere 
in the environment nor that people must directly interact 
with any kind of computational device. Our approach is 
to advocate minimal hardware modifications and 
"decorations" (e.g., cameras and microphones) in 
ordinary spaces to enable the types of interactions in 
which we are interested. Rather than use the computer- 
everywhere model of ubiquitous computing - where for 
example, chairs have pressure sensors that can register 
people sitting in them or people wear infrared-emitting 
badges so they can be located in a building - we want to 
enable unencumbered interaction with non-augmented, 
non-computational objects (like chairs) and to do so 
without requiring that people attach high-tech gadgetry to 
their bodies (as opposed to the approach in [24,25]). 

AI-based approaches have much to offer these 
environments. For example, although a pressure sensor 
on a chair may be able to register that someone has sat 
down, it is unlikely to provide other information about 
that person, e.g., her identity.   Visual data from a single 
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camera can provide far more information than simple 
sensing technologies. This includes the person's identity, 
position, gaze direction, facial expression, gesture, and 
activity ([13, 25,17,30,12]). While there has yet to be a 
coherent system that unifies all of these capabilities, many 
prototypes are currently under development. 
Furthermore, enhancing the capabilities of a computer 
vision system often requires modifying only the software 
algorithms that process incoming images and not the 
room's, sensory components. Also, because the room 
senses at a distance, objects, in particular people and 
furniture, do not need to be physically augmented and/or 
wired for the room to become aware of them. 
Other related work 
The DigitalDesk project (Wellner [26], Newman et al. 
[19]) was an early and influential system that had a bird's 
eye view of a desktop through an overhead video camera. 
It recognized and responded to predetermined hand 
gestures~made by users while interacting with real paper 
documents on the surface of a desk. The Intelligent 
Room has a desktop environment directly motivated by 
the DigitalDesk, which recognizes a wider range of 
complex hand gestures (Dang [11]). 

Other substantial efforts towards highly interactive 
environments include an automated teleconferencing 
office (Cooperstock et al. [10]) and an immersive fictional 
theater (Bobick et al. [3]). Each of these projects makes 
use of embedded computation to enable unusual human- 
computer interactions, e.g., vision-based person tracking. 
However their modal processing is extraordinarily 
specific to their applications, and the applicability of such 
carefully tuned systems to other domains is unclear. The 
Classroom 2000 project (Abowd et al. [1]) is an 
educational environment that automatically creates 
records linking simultaneous streams of information, e.g. 
what the teacher is saying while a student is writing down 
her notes on a digital pad. Mozer ([18]) 
describes a house that automatically controls basic 
residential comfort systems, such as heating and 
ventilation, by learning patterns in its occupants behavior. 

Related user-interface work such as Cohen et al. [5] 
uses multimodal interface technology to facilitate human 
interaction with a preexisting distributed simulator. In 
doing so, it provides a novel user-interface to a complex 
software system, but it is one that requires tying down the 
user to a particular computer and a specific application. 
We are interested in creating new environments that 
support never before conceived of applications - 
applications that historically have not involved 
computation. 

4. The Intelligent Room 
The Intelligent Room occupies a 27'x37' room in our 
laboratory. Approximately half of this space is laid out 
like an ordinary conference room, with a large table 
surrounded by chairs.   (See Figure 1.)   This section has 

two bright, overhead LCD projectors in addition to 
several video displays. There is also an array of computer 
controlled video equipment which is discussed below. 

Pointing Cameras 

- Displuj s 

OK-s 

\ // 
Tnickinü Cameras 

Wire! os 
Microphone 
Rix-ci\er 

Figure   1   -   A   skeletal   view   of   the 
conference area in the Intelligent Room 

Mounted at various places in the conference area are 
twelve video cameras, which are used by computer vision 
systems. 

Separated from the conference area by a small partition 
and occupying the rest of the room are most of the 
workstations that perform the room's computation. The 
section of the room is not interactive, but having it 
adjacent to the interactive conference area simplifies 
wiring, implementation and debugging. 

The Intelligent Room contains an array of computer 
controlled devices. These include steerable video 
cameras, VCRs, LCD projectors, lights, curtains, 
video/SVGA multiplexers, an audio stereo system, and a 
scrollable LCD sign. The room's lighting is controlled 
through several serially interfaced X-10 systems. Many 
of the room's other devices have serial ports that provide 
both low-level control and status information, e.g., our 
VCRs can report their present position on a videotape to 
give us random access to video clips. The room can also 
generate infrared remote control signals to access 
consumer electronics items (namely, objects that don't 
have serial ports). 

Room Controller 
When the Intelligent Room was in the early stages of it 
design and construction, the most challenging research 
problems appeared to be developing its computer vision 
and speech recognition/understanding systems. What was 
not obvious is that interconnecting all of the rooms many 
subsystems and coordinating the flows of information 
among the room components was a non-trivial problem. 
Developing a software architecture that allowed the room 
to run in real-time and cope with vagaries of its real-world 
interactions emerged to be one of the room's chief 
research problems. 

What emerged from an iterative development process is 
a modular system of software agents known collectively 
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as the Scatterbrain (described in detail in Coen [6]). The 
Scatterbrain currently consists of approximately 50 
distinct, intercommunicating software agents that run on 
ten different networked workstations. These agents' 
primary task is to connect various components of the 
room (e.g., tracking and speech recognition systems) to 
each other and to internal and external stores of 
information (e.g., a person locator or an information 
retrieval system). Essentially, the Scatterbrain agents are 
intelligent computational glue for interconnecting all of 
the room's components and moving information among 
them. 

5. Room Vision Systems 

Person Tracking 
The Intelligent Room can track up to four people moving 
in the conference area of the room at up to 15Hz. The 
room's person tracking system (DeBonet [13]) uses two 
wall-mounted cameras, each approximately 8' from the 
ground. (A debugging window from the system showing 
the view from one of the cameras is shown in Figure 2.) 

We initially decided that incorporating a tracking 
system in the Intelligent Room was essential for a number 
of reasons. It gives the room the ability to know where 
and how many people are inside it, including when people 
enter or exit. The room is able to determine what objects 
people are next to, so for example, it can show data on a 
video display someone is near. A person's location in the 
room also provides information about what she is doing. 
For example, someone moving near a video display while 
others are seated around the conference table might 
indicate she is giving a presentation. 

The tracking data are useful for supplying information 
to other systems in the room including, to our surprise, 
our speech understanding system. It was clear from the 
start that tracking could disambiguate other room 
modalities, for example, by providing a foveal area for 
gesture recognition. However, its use in providing 
contextual information to the room's speech recognizer is 
a revealing example of how one modality can be used to 
help overcome the weaknesses of another. In this case, 
where people are in the room can sometimes provide 
information about what they are likely to say (see section 
6). 

The tracking system works via background 
segmentation and does 3D reconstruction through a neural 
network. The output image from each camera is analyzed 
by a program that labels and identifies a bounding box 
around each occupant in the room. This information is 
then sent through a coordination program that 
synchronizes the findings from the individual cameras 
and combines their output using a neural network to 
recover a 3D position for each room occupant. People are 
differentiated in the system using color histograms of 
their clothing, which the room builds when they first 

come inside. Because the room's configuration is fairly 
static and the cameras used for tracking are stationary, the 
tracking system can build a model of the room's relatively 
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Figure 2 - Tracking System Debug Window 

slowly changing background to compare with incoming 
images. 

The tracking subsystem also controls three steerable 
cameras. These can be used to follow individuals as they 
move about the room or to select optimal views of people 
given their position and previous knowledge of room 
geometry, e.g. where people likely face when standing in 
particular areas of the room. 

This approach differs from the overhead tracking 
system described in Bobick et al. [3]. Their domain had 
27' high ceilings, for which it is quite reasonable to look 
for people from a single camera bird's eye perspective. 
Rooms with ordinary height ceilings do not make this 
possible, so a stereo vision system seems necessary for 
performing background segmentation. 

Pointing 
The Intelligent Room's two overhead LCD video 
projectors display next to each other on one of the room's 
walls. Each can display SVGA output from one of the 
room's workstations or composite signals from any of the 
room's video sources, e.g., a VCR. These projected 
displays support both finger and laser pointing 
interactions. For example, the room can track the finger 
of a person who is pointing within four inches of the wall 
where images are displayed. Alternatively, the person can 
use a laser pointer to interact with the display from a 
distance. Both of these pointing systems also allow 
displayed screen objects to be selected (i.e. clicked) or 
moved (i.e. dragged). 

Additionally, the pointing systems allow people to treat 
the displays like virtual whiteboards. The room can draw 
a visible trail on top of a displayed image that follows the 
continuous path of a motile pointing gesture. This allows 
people to overlay handwritten text and drawings on top of 
whatever information the room is displaying. These can 
then be automatically recalled at a later date, for example, 
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when the room shows this information again. 
The finger pointing system uses two cameras mounted 

parallel to the wall on either side of the displays. It makes 
use of only three scan lines from each camera image to 
explore the region closest to the wall's surface. The laser 
pointing system uses a camera roughly orthogonal to the 
plane of the display wall to locate the laser's distinctive 
signature on the wall's surface. These systems run at 
approximately 15-20Hz, depending on the precise type of 
interaction, and provide resolution per display ranging 
from approximately 640x480 for laser pointing to 
160x120 for finger pointing. Although the pointing 
systems are sufficiently responsive for discrete pointing 
and dragging events, handwriting recognition using the 
above mentioned drawing feature does not seem practical 
with out at least doubling the sampling frequency. 

Interactive Table 

Through a ceiling mounted camera, the room can detect 
hand-pointing gestures and newly placed documents on 
the surface of the conference table. The gesture 
recognition system has been used to support a wide 
variety of functions (described in Dang [11]). We found, 
however, that making gestures over the surface of a table 
was not a particularly natural form of interaction and 
required extensive practice to master. As has been widely 
observed in the graphical user interface community, we 
found that increased novelty in an interface does not 
necessarily lead to increased utility. This is even more 
pertinent in domains like the Intelligent Room, which 
stress natural modes of interaction. 

One useful application of this system, however, allows 
people to place Post-It™ notes on the surface of the table 
and assign to them particular functions, such as dimming 
the lights or announcing the current time. Touching a 
given note then evokes its assigned behavior from the 
Intelligent Room. As a mnemonic, the function of each 
note can be handwritten upon it, giving the table the 
feeling of a virtual, very non-standard control panel. The 
room is oblivious to any written information on these 
notes, as long as it doesn't interfere with the color 
segmentation that allows individual notes to be 
recognized. 

Issues 
Our person tracking system uses a neural network to 
perform 3D reconstruction. The tracking network is 
trained by laying a masking tape coordinate system on the 
room's floor and then training the network by having a 
person stand at each intersection of the axes. (The grid 
was roughly 10x20.) Although non-network approaches 
to 3D reconstruction are possible, such as directly 
calculating the reverse projective transformation, they 
would all likely require a user-intensive preliminary 
learning period to determine the transformation between 
room and image space. Thus, installing our tracking 
system is labor intensive and requires some familiarity 

with how it operates. 
Another difficulty with this approach is that the system 

is enormously sensitive to any deviation from its training 
conditions. For example, if one of the cameras is moved 
by so much as 1cm, the tracking system fails to function. 
Although automatic recalibration might be possible by 
using natural or artificial environmental fiducials, in 
practice these are either difficult to detect or highly 
intrusive when added to the environment. Thus, cameras 
being moved or rotated requires retraining the neural 
network, something a non-technical user would never 
want to do. 

It is not accidental that so much computer vision 
research around the world is performed in rooms without 
windows. Computer visions systems, particularly ones 
that rely on background segmentation, can be 
extraordinarily sensitive to environmental lighting 
conditions. For example, early in the Intelligent Room's 
development, ambient light coming through a newly 
opened door could completely disrupt all of the room's 
vision systems. While this was an early design flaw, in 
general it can be extremely difficult to compensate for 
changing lighting conditions. 

Shadows are also particularly difficult phenomena to 
cope with and we took great pains to avoid them. We 
disabled some of the room's overhead fluorescent lighting 
and used upward pointing halogen floor lamps instead. 
Additionally, we selected a fairly dark colored carpet, 
which is better at shadow masking. The tracking system 
also used a color correction mechanism for shadow 
elimination. However, a static color correction scheme 
was only partially useful because the tracking cameras 
were affected by the dynamic lighting of the projected 
video displays. 

Solutions 
Our research agenda for computer vision systems for Hal 
has changed drastically from the approach used in the 
Intelligent Room. Rather than incorporating the state of 
the art in visually based interactions, we have become far 
more interested in robust vision systems that require little 
calibration and are essentially self-training. 

We have enabled the room's vision systems to 
reinforce one another. For example, our multi-person 
tracker may temporarily lose people when they occlude 
one another or blend into the background. One way to 
help offset this is to have the finger pointing system 
provide information useful for tracking. Someone finger 
pointing at the projected display must be standing 
somewhere near that position on the room's floor. By 
knowing where someone is pointing, the tracker can focus 
its attention on that section of the room. Conversely, the 
tracking system allows the room to identify the person 
who is pointing at the wall. By determining which 
tracked person is closest to the pointed at position, the 
room can distinguish among its inhabitants during finger 
pointing gestures. 

Various devices in the room can also interact with its 
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vision systems. The software agents that control the 
room's drapes and electrical lights notify the vision 
systems before they do anything that might affect the 
room's ambient lighting. This allows each vision system 
either to recalibrate or to deactivate itself until conditions 
favorable to its correct operation are restored and also 
avoids incorrect event recognition due to luminosity 
changes. 

Although dynamic person tracking seemed essential 
during the design of the Intelligent Room, it became clear 
in retrospect that the vast majority of the tracking 
system's output is thrown away. Few applications need 
or can make use of real-time trajectory information for the 
room's occupants. Rather, what is particularly important 
is to know where someone is when she stops moving (i.e. 
next to or sitting on some piece of furniture) or when she 
has crossed a particular threshold (i.e. the room's 
doorway). 

It is far easier and computationally less demanding to 
build systems that provide these kind of relatively slowly 
changing data without resorting to real-time occupant 
tracking. They look for people at rest in places where they 
are expected to be found, such as sitting on a couch or 
standing by a display, or for people crossing through a 
narrow, well-defined region such as a doorway. 

We have implemented and experimented with several 
such systems, which we call static person locators and 
threshold detectors. These include a template-based 
couch detector, which locates people either sitting or 
lying down on a chair or sofa. This system is easily 
trained and quite robust. We have also implemented a 
dedicated doorway tracker for distinctly determining 
when someone enters or leaves the room, and thereby it 
also keeps track of how many people are currently 
present. Both of these systems are algorithmically quite 
simple and far less sensitive to environmental variations 
than our initial tracking system. They have proved quite 
robust, and their initial detection accuracy in varying light 
conditions and over a wide range of individuals is over 
90%. 

We are also creating generic chair locators using a 
ceiling mounted vision system. Our assumption is that 
occlusion of a chair provides evidence that someone is 
sitting in it, and this person can be located using prior 
knowledge of the chair's position. This system will use 
low dimension eigenspaces for approximating object 
manifolds under varying pose and lighting conditions 
(Stauffer [21]). The advantage to this approach is that the 
system need not be given in advance an explicit model of 
the chairs it will be locating. The system can construct 
object manifolds itself by having a user rotate any new 
types of chairs she brings inside. 

6. Speech Interactions 

Among the earliest decisions regarding the Intelligent 
Room was that it should support spoken language 
interactions. In particular, we were interested in allowing 

these interactions to be unimodal - i.e. ones that did not 
tie the user to a video display to verify or correct 
utterances recognized by the system nor require a 
keyboard for selecting among possible alternative 
utterances. We also wanted to avoid simply creating a 
keyboard replacement that allowed speech commands to 
substitute for actions ordinarily performed by typing or 
mouse clicking. Finally, we wanted to allow interaction 
with multiple applications simultaneously and thus not 
have interactions that monopolized the user. In the 
process, we have tried to allow the Intelligent Room to 
engage in dialogs with users to gather information, correct 
misunderstandings, and enhance recognition accuracy. 

People in the Intelligent Room wear wireless lapel 
microphones that transmit to the speech understanding 
system described below. By default, the room ignores the 
spoken utterances of its inhabitants, which are generally 
directed to other people within the room. This state is 
known as "the room being asleep."' To obtain the room's 
attention, a user stops speaking for a moment and then 
says the word "Computer" out loud. The room 
immediately responds with an audible, quiet chirp from 
an overhead speaker to indicate it is paying attention. The 
user then has a two second window in which to begin 
speaking to the room. If the room is unable to recognize 
any utterances starting within that period, it silently goes 
back to sleep until explicitly addressed again. However, 
if what the user says is recognized, the room responds 
with an audible click and then under most circumstances 
it returns to sleep. This hands- and eyes-free style of 
interaction coupled with audio feedback allows a user to 
ignore the room's computational presence until she 
explicitly needs to communicate with it. There is no need 
to do anything other than preface spoken utterances with 
the cue Computer to enable verbal interaction. Thus, a 
user can interact with the room easily, regardless of her 
proximity to a keyboard or monitor. 

The Intelligent Room is capable of addressing users via 
the Festival Speech Synthesis System (Black et al. [2]). 
Utterances spoken by the room are also displayed on a 
scrollable LCD sign in case a user was unable to 
understand what was said. The room uses its speech 
capability for a variety of purposes that include 
conducting dialogs with users and getting its occupant's 
attention without resorting to use of a visual display. 
Sometimes, the room chooses to respond vocally to a 
question because its video displays are occupied by what 
it considers high priority information. For example, if a 
user asks, "What's the weather forecast for New York 
City?" the room can simply read the forecast to the user, 
rather than put up a weather map containing forecast 
information if its displays are occupied. 

For processing spoken utterances, we use both the 
Summit (Zue et al. [27]) and DragonDictate speech 
recognition  systems  in  parallel.     Each of these  has 

1 The room's vision systems continue to function and respond to users even when it is 

not listening for verbal input. 
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different strengths and used together they have fairly 
robust performance. The Summit system recognizes 
continuous speech and is particularly adept at handling 
syntactic variability during recognition. By entering 
bigram models, it is fairly straightforward to build 
topically narrow but syntactically unconstrained sets of 
recognizable utterances. Bigram models, however, make 
it quite difficult to exclude particular statements from 
being erroneously recognized by the system and require 
that we heavily post process Summit's output. This is 
performed primarily by the START natural-language 
information retrieval system (Katz [15]). 

DragonDictate is a commercially available system 
primarily used for discrete speech dictation, meaning that 
users must pause after each word. This, when coupled 
with its relatively low word accuracy, would be an 
intolerable speech interface to the room. However, 
DragonDictate also supports explicit construction of 
continuous speech, context-free recognition grammars. 
Via a special library, it also provides complete control 
over low-level aspects of its behavior to external 
applications, which makes it ideal for incorporating into 
other systems. 

Issues 
There is a tradeoff between making the room's 

recognition grammars sufficiently large so that people can 
express themselves somewhat freely versus making the 
grammars small enough so that the system runs with high 
accuracy and in real-time. We tuned DragonDictate's 
performance by creating sets of specialized grammars for 
different room contexts and having the room's software 
agent controller dynamically activate different subsets of 
grammars depending on the context of the activity in the 
Intelligent Room (Coen et al. [9]). This allows us to 
overcome the combinatorial increase in parsing time due 
to incorporating natural syntactic variability in the 
recognition grammars. 

Instead of keeping a single enormous recognition 
grammar active, the room keeps subsets of small 
grammars active in parallel, given what it currently 
expects to hear. The key assumptions here are that certain 
types of utterances are only likely to be said under 
particular circumstances, and these are circumstances 
among which the room is capable of distinguishing. 
These may be related to where someone is spatially, the 
history of her previous interactions (i.e. what room 
applications are active), how she is gesturing, what 
devices in the room are doing, etc. At the simplest level, 
this can range from the implausibility of someone saying 
"stop the video," when none is playing, to more complex 
dependencies, such as the meaninglessness of someone 
asking "What's the weather there?" if no geographic 
entity has somehow been brought to the room's attention. 

We have generalized the notion of linguistic context to 
include the state of and goings on in the room and have 
put this contextual knowledge into the room's software 
agents rather than its linguistic data structures.    For 

example, if the room starts showing a video clip, the agent 
that controls the showing of videos activates the 
grammars that involve VCR operation. When the clip 
stops, these grammars are in turn deactivated. More 
interesting cues can involve the location of someone 
inside the room. The fact that someone has moved near 
an interactive displayed map causes the room to pay 
attention to spoken utterances involving geographic 
information. Thus, information from the room's other 
systems can help overcome computational limitations in 
the room's speech recognition and understanding systems. 

Verbal interactions can also be extremely useful for 
dealing with the room's other modalities. They can be 
used to gather information about what the room is 
observing, to modify internal representations of its state, 
or to correct a perceptual error. It is also of enormous 
benefit to be able to verbally interact with the room's 
vision systems while developing or debugging them, 
because it is generally impossible to manually interact 
with them at a workstation while remaining in the 
cameras' fields of view. 

7. Conclusion 
Our experience with the Intelligent Room has led us to 
reevaluate many of our initial assumptions about how a 
highly interactive environment should be designed. 
Intelligent environments need to be more than rough 
assemblages of previously existing systems. In particular, 
careful selection and communication among modalities 
can lead to synergistic reinforcement and overall, a more 
reliable system. The modalities must also be carefully 
selected in order to make the environment easy to install, 
maintain, and use under a wide range of environmental 
conditions. 

Systems that dynamically adjust to the room's activity, 
such as our speech understanding system, and systems 
that can train themselves and avoid extensive manual 
calibration, are essential to an IE's success. We hope the 
issues addressed in this paper will both stimulate further 
discussion and prove useful to other designers of 
intelligent environments. 
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Abstract. Intelligent, interactive environments promise 
to drastically change our everyday lives by connecting 
computation to the ordinary, human-level events 
happening in the real world. This paper describes a new 
model for tracking people in a room through a multi- 
camera vision system that learns to combine event 
predictions from multiple video streams. The system is 
intended to locate and track people in the room, determine 
their postures, and obtain images of their faces and upper 
bodies suitable for use during teleconferencing. This 
paper describes the design and architecture of the vision 
system and its use in Hal, the most recently constructed 
interactive space in our Intelligent Room project. 

1 Introduction 

For the past four years, the MIT Artificial Intelligence 
(AI) Laboratory has been developing platforms for 
research in Human-Computer Interaction (HCI) as part of 
the Intelligent Room Project. This work has been 
motivated by the following simple observation: computers 
today are generally used for things that are computational, 
such as reading e-mail, and for most of us, the majority of 
our lives are spent doing non-computational things, such 
as taking baths and eating dinner. Historically, however, 
computational systems have had no connection with the 
ordinary, human-level events going on in the world 
around them. Thus, they have no way to participate in the 
everyday lives of the people who use them. 

In the Intelligent Room Project, we are interested in 
creating spaces - generally known as Intelligent 
Environments (IEs) - in which computation is seamlessly 
used to enhance ordinary, everyday activities. We want 
to   incorporate   computers   into   the   real   world   by 

This material is based upon work supported by the Advanced 
Research Projects Agency of the Department of Defense 
under contract number F30602—94—C—0204, monitored 
through Rome Laboratory. 

embedding them in regular environments, such as homes 
and offices, and allow people to interact with them the 
way they do with other people. The user interfaces of 
these systems are not menus, mice, and keyboards, but 
instead gesture, speech, affect, context, and movement. 
Their applications are not word processors and 
spreadsheets, but smart homes and personal assistants. 
Instead of making computer interfaces for people, we 
believe it is of more fundamental value to make people 
interfaces for computers. 

Fortunately, over the past few years, developments in 
the field of computer vision have begun to provide many 
opportunities for exploring new types of HCI. These 
allow computational systems to, among other things, 
determine people's identity, physical location, gaze 
direction, facial expression, hand gestures, and activities 
(for example, see [8,13]). However, the requirements 
placed on machine vision systems used for IEs are 
significantly different from the requirements placed on 
machine visions systems used in laboratory or industrial 
settings. A vision system that works beautifully under 
structured, carefully orchestrated laboratory conditions 
may be of little use in environment where people are 
encouraged to interact naturally, without worrying about 
which direction they are facing or even whether they stay 
in the field of view of some camera. 

This paper describes a new model for tracking people 
in an IE in the context of Hal, our most recently 
constructed intelligent room. In this model, locations in a 
room that are likely to contain people are used as 
reference points to interactively train a multi-camera 
vision system. It learns to combine event predictions 
from multiple video streams in order to locate people at 
these reference points in the future. The system can also 
dynamically track people as they move between these 
locations. Because most rooms have natural attractors for 
human activity, such as doorways, furniture, and displays, 
the selection of training points is generally readily 
apparent from the layout of the room. 

Our interest is how to make it easy to set up and 
maintain this type of vision system in an environment 
such as Hal, which currently contains four fixed and three 
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computer-steerable cameras. The vision system described 
here is intended to locate and track people in the room, 
determine their postures, and obtain images of their faces 
and upper bodies suitable for teleconferencing. 

Although it may seem extravagant to outfit a small 
room with so many cameras, the increasingly low-cost of 
hardware for machine vision makes it quite feasible to do 
so. However, installing a large number of vision systems 
in a single room raises the following questions, which the 
rest of this paper addresses: 
1. How can the vision systems learn the types of events 

they can see? 
2. How can individual cameras be shared by multiple 

vision systems? 
3. How can we learn the correspondences among events 

in the fields of view of different cameras? 
4. How can the vision systems learn how their visual 

fields overlap so they can reinforce each other 
through communication? 

5. How can we avoid the need to precisely calibrate the 
cameras? 

We argue in this paper for a particular 
approach that has been valuable in the 
development of Hal, which has been equipped 
with computer vision systems specifically 
designed for coping with the difficulties 
expected to arise during unstructured 
interactions. The primary components of this 
system's architecture are its generalizability, 
redundancy, and ability to learn spatial events 
without requiring elaborate training scenarios. 

We first discuss design level issues for the 
system, including why we used computer vision 
as opposed to other possible technologies. 
Next, we describe Hal's layout, components, 
and the types of applications intended to run 
within it. Finally, we discuss the architecture of 
the vision systems and how well this system has 
satisfied our design goals. 

2 Design Considerations 

Research in Intelligent Environments has been heavily 
influenced by the work done in Xerox PARC's 
Ubiquitous Computing (UbiComp) Project [14,15]. 
UbiComp has avoided AI approaches to HCI for many of 
the perceptory tasks at which computer vision excels. 
Instead, hardware sensors - more reliable in the early 
1990s but highly limited in their perceptory capabilities - 

were employed to gather information about people 
interacting with UbiComp systems. For example, 
someone could be tracked in a building by wearing an 
infrared-transmitting active badge. Similarly, a room 
could determine that a person was sitting in a chair via a 
pressure switch in the seat cushion. 

However, machine vision techniques can do a far 
better job of allowing IEs to understand the activities 
going on within them than can simple sensing 
technologies. For example, although a pressure sensor in 
a chair may be able to register that someone has sat down, 
it is unlikely to provide any other information about her, 
such as who she is or which way she is looking; active 
badges or motion detectors [9] can indicate that someone 
has entered a room, but they can not, for example, 
determine what objects she is pointing at while speaking. 
Computer vision systems can provide much richer 
descriptions of human activities, which are essential for 
supporting natural interactions. 

Non-vision technologies are also highly 
encumbered - furniture must be constructed or 
retrofitted with sensors and people must clip 
devices onto their bodies for a UbiComp system 
to be aware of them. Vision systems sense at a 
distance, so that people and furniture do not 
need to any special augmentation for an IE to 
perceive them. They also have far greater 
flexibility, in that once the video hardware is 
installed, different image processing algorithms 
can be applied to the video streams without 
requiring changes to the system's physical 
infrastructure. Finally, their video streams are 
reusable by other systems, such as in 
teleconferencing or surveillance applications. 

2.1 Vision for IEs 
Using machine vision systems for IEs, as 
opposed to for more general-purpose HCI 
applications, can change basic assumptions 
about what types of data the systems are 
providing. IEs frequently do not require high- 
precision information, but they require that 
information be supplied on a time scale 
comparable to the events they are observing. In 
addition, people are comfortable interacting in 
very complex, unstructured environments, so it 
is reasonable to require that the vision systems 
be capable of functioning within them as well. 

Much of the information needed in human-computer 
interaction is qualitative in nature. For example, it may be 
necessary to distinguish between a person sitting on a 
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chair, a person standing in front of the chair, and a person 
standing by the door. This information fits more 
accurately into a qualitative classification system than 
into a system that gives only quantitative information 
(such as position and size). 

Since much useful information can be 
described qualitatively and since qualitative 
information should be obtainable without a 
precise geometric model of the world, we insist 
that precise external calibration be avoided in 
our vision systems. By minimizing the amount 
of required external calibration, we expect it 

i t*sa 

Figure  1A - A picture of Hal  from  the 
doorway with several cameras labeled. 

should be easier both to modify the 
configuration of the system and to make it 
robust with respect to small perturbations, such 
as a camera being moved accidentally. We 
view both of these characteristics as essential to 
making intelligent environments viable in the 
"real-world" - outside of controlled laboratory 
conditions. 

Information from machine vision systems 
used in a noisy, unconstrained environment 
often possesses a large degree of uncertainty. 
Some sources of the uncertainty include 
unfavorable lighting conditions and coincidental 
color matches between objects - for example, a 
person wearing a green shirt who happens to be 
sitting in a green chair may seem to disappear to 
many vision systems. One way to reduce the 
amount of uncertainty in the system is to 
replicate the systems and place additional 
cameras    at    different    locations    in    the 
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Figure IB - Hal's floor plan with all camera 
positions labeled. 

environment. Confusing shadows that are 
visible for one camera may not be problematic 
for a second camera viewing the scene from a 
different perspective, and the overlap between 
foreground and background objects will likely 
be different for them as well. 

3 Interacting with Hal 

Hal is a small room within our lab that doubles 
as the first author's office (See Figures 1A and 
IB). Hal is equipped with microphones, seven 
video cameras, and a variety of audio-visual 
output devices that it can directly control. The 
cameras, microphones, and devices are 
connected to a cluster of a dozen workstations in 
an adjacent room. These workstations run a 
distributed software agent system that controls 
Hal's operation [2]. 

Hal was designed to explore a wide range of 
interactions involving futuristic residential spaces - 
stressing quality of life - and commercial spaces - 
stressing information management. We have therefore 
created applications in Hal that support entertainment, 
teleconferencing, business meetings, military command 
post scenarios, and information retrieval. (More in-depth 
descriptions of these applications can be found in [3,5].) 
Hal was carefully designed with respect to its intended 
applications [3]. Because we were particularly interested 
in   creating   teleconferencing   and   meeting   recording 
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Figure 2 - Hal's layout.   Cameras are circled in the image and individually 
labeled. Sections of each camera's field of view are delineated with dotted lines. 

systems within Hal, cameras had to be strategically placed 
to obtain useful views of Hal's inhabitants. Many 
visually based room tracking systems, such as [1], use 
fixed, ceiling-mounted cameras in very large rooms, 
because they can obtain "bird's eye" views and are less 
sensitive to visual occlusion. However, cameras placed in 
or near a ceiling cannot typically obtain images of people 
that are suitable for other people to watch. It was 
therefore necessary to place cameras inside Hal that were 
able to obtain high-quality images of its inhabitants' 
faces. 

We also wanted these cameras to track people during 
teleconferencing, so that users could freely move about 
the room; people who are teleconferencing should not 
need to concern themselves with staying in the field of 
view of a particular camera. However, the proximity of 
the users and teleconferencing cameras made it likely that 
people might quickly move out of an individual camera's 
field of view. We therefore opted for hybrid approach, 
combining fixed "bird's eye" cameras outfitted with 
wide-angle lenses - that could see large sections of Hal - 
with steerable camera that could quickly focus on much 
smaller sections of the room. Our goal has been to allow 
these systems to intercommunicate to overcome their 
inherent individual limitations. 

Of Hal's seven cameras, two are dedicated to a special 
purpose vision system that allows a user to manipulate a 
computer's mouse cursor by pointing a laser pointer at 
either of two projected video displays. These are labeled 
A and B in the figure, and will not be discussed further in 
this paper. Cameras C & D are fixed video cameras with 
wide-angle lenses. Camera C is mounted in an overhead 
bookshelf and views the couch and coffee table areas. 
Camera D is ceiling mounted and overlooks the doorway. 
Cameras E, F, and G are Sony EVI-D30 steerable 
cameras under computer control. Each of these cameras 
has a pan range of approximately 180 degrees and tilt 
range of approximately 90 degrees. Figure 2 contains 
several views of Hal and illustrates how the fields of view 
of the cameras overlap. 

The following scenario is an amalgam of 
several illustrative interactions that currently run 
inside Hal. (Capital letters in the following refer 
to cameras, e.g., "E" is Camera E in the floor 
plan.) The first author walks inside Hal. Hal 
sees him via D and rotates whichever of E or F 
is not otherwise occupied to obtain an image of 
his face.   Hal can currently detect the presence 
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Figure 3 - Sample panoramic background generated by Camera F from 18 
source images and stored in transformed pan-tilt space. Pan range = 180° and tilt 
rano? = fif>° 

of faces in images but cannot yet distinguish 
people by them.  However, seeing a face in the 
doorway increases the confidence that someone 
actually just entered the room. Also, this image 
can  be  videotaped  or  transmitted  during   a 
teleconferencing    session    so    that    remote 
participants can see who has entered.  Hal says, 
"Good   evening   Michael,   you   have   three 
messages waiting."   Hal displays the messages 
on one of the projected displays.   As the user 
walks to the couch and sits down, Hal will 
attempt to track him via E or F. Once the user is 
seated on the sofa, Hal sees him via C and keeps 
F focused on his upper torso. As the user moves 
around the sofa/coffee table area, Hal tracks him 
with F. C is used to help steer F in case the user 
moves out of F's field of view.     If the user 
moves too close to F and Hal can no longer 
obtain a good image of him, Hal will switch to 
E  (or eventually  perhaps  G,  which  due  to 
temporary    hardware    limitations,    does    not 
currently interoperate with E).   Next, the user 
lies down on the sofa. Supposing his clothing is 
quite dark, he blends into the background so Hal 
isn't sure if he has actually lay down.  Hal will 
then search for his face via C and will sweep F 
to make sure it cannot see him sitting up.   Hal 
will then infer that he did indeed lie down; it 
will next ask if he is going to relax for a little 
while.   If the user answers affirmatively, Hal 
will dim the lights, close the drapes, and put on 
Mozart softly in the background.    After Hal 
dims the lights, it will update its model of what 
the room looks like. 

4 Implementation 

The current implementation of Hal's vision 
systems contains three major parts. At the 
lowest level is a common image processing 
library that processes the video streams from 
each of Hal's cameras (with the exception of A 
and B, as mentioned above). In programmer's 
parlance, the same "code" is running over all the 
video streams. The data obtained from each 
stream, in the form of a feature vector, is then 
passed up to a higher-level system of Image 
Processing Agents that build statistical cluster- 
based models to uniquely classify the events 
seen from each camera's viewpoint. 
Recursively, these single-camera events are then 
themselves temporally clustered, creating a 
global qualitative model of how a single 
perceptual event within Hal is simultaneously 
perceived by any of the cameras that can see it. 
For example, when Hal builds a model of 
someone walking through the doorway, this 
model contains what it expects Cameras D, E, 
and F would see if they were watching someone 
do so. 

These multi-viewpoint models can then used to 
increase confidence that events are being detected 
correctly. For example, consider the case where Hal 
thinks someone is entering the room because of data 
obtained by Camera D. If Hal knows that this event 
corresponds to a certain (pan, tilt) value for Camera E, 
Hal can "borrow" this camera for a moment (presuming it 
is being used for something else) and turn it to that 
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orientation to supplement that data obtained from Camera 
D. 

We now discuss each of the vision system's 
levels in turn. 

4.1 Low-level image processing 
Each camera is connected to a separate 
workstation equipped with a frame grabber and 
running a low-level image-processing library. 
This library transforms each incoming image 
into a feature vector containing background 
difference, skin detection, and face detection 
information. (Optical flow values can also be 
calculated for each video stream, but this is 
currently only done for Camera D.) These 
vectors are then available for the Image 
Processing Agents described in the next section. 
The low-level libraries process images 
somewhere between 10-30Hz, depending on 
what they are viewing. For example, an image 
containing a face takes longer to process than an 
image without one. 

We discuss here the three primary 
components of the feature vector and the optical 
flow calculation. 

Background Differencing 
Although background differencing itself is a relatively 
simple technique, the fact that the system uses steerable 
cameras adds significantly to the complexity of the 
process. Although it is straightforward to create an array 
of background images for a small number of 
predetermined (pan, tilt) values for a steerable camera, it 
is not feasible to capture and store a background image 
for each of the thousands of possible pan-tilt orientations. 

It is possible, however, to completely span the 
camera's viewable world using only a few dozen images. 
By then performing appropriate coordinate transforms, it 
becomes feasible to dynamically synthesize a background 
for an arbitrary camera orientation. We currently use 
eighteen images (two rows by nine columns of slightly 
overlapping images) to span each camera's range of 180 
degrees of pan and 60 degrees of tilt. The system uses 
these images to create one large "panoramic" background 
(Figure 3), which is stored in the transformed pan-tilt 
space instead of x-y coordinates of a certain image 
position. 

A myriad of issues must be dealt with while building 
panoramic backgrounds. This includes selecting an 
appropriate scaling for the background that avoids 
undersampling the images. The coordinate transform from 
camera image x-y space to panoramic background pan-tilt 

space also depends on several parameters associated with 
the camera. Space limitations preclude detailed 
discussion, but these include the camera's aspect ratio, 
focal length, radial distortion, and precise axis of rotation. 
For example, the cameras used by the system are not 
ideal; they exhibit significant but consistent radial 
distortion due to imperfections in the lenses. This type of 
distortion can be modeled by determining a "center of 
distortion" and by radially expanding or contracting the 
image according to an empirically determined power 
series. Although it was decided that empiric calibration 
would be most expedient, at some point it may be easier 
to automate much of the calibration using the procedure 
described in [12]. 

Skin Color Detection 
The second algorithm used by the low-level system is a 
skin-color detection algorithm that operates independently 
on each input pixel. Because skin color is determined by a 
combination of the red hue in blood and the yellow-brown 
hue of melanin, the hue of skin is restricted to a narrow 
range of hues. To detect input pixels in this narrow range 
of hues, the input RGB values were transformed into a 
log-opponent color parameterization according to a 
variant of the method described in [6]. 

Face Detection 
The third algorithm that is applied to the input is a face 
detection algorithm. The algorithm is a ratio template 
algorithm developed by [11] and used in the Cog 
humanoid robot [10]. This algorithm is quite 
computationally efficient when compared to neural- 
network approaches, and it performs reasonably well in a 
cluttered environment. These features make it suitable for 
human-computer interaction scenarios. 

Optical Flow 
A correlation-based optical flow algorithm compares 
localized patches of an image to patches of a subsequent 
image with a range of possible offsets from the original 
patch. The best match in the subsequent image is 
assumed to represent the location of the corresponding 
patch in the new image, and the spatial offset between 
patches in the two images corresponds to the optical flow. 
Optical flow information is assumed to be the same as the 
motion field of the image. This information is therefore 
useful for detecting transient events such as entries and 
exits. These events happen too quickly to be reliably 
detected by the other low-level image processing 
components. 
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4.2 Local Event Processing - Image 
Processing Agents 
The next level of the system is comprised of 
Image Processing Agents, which uniquely 
connect with the different low-level libraries 
processing the incoming video streams. Each 
Image Processing Agent receives a stream of 
feature vectors corresponding to the visual input 
of the camera with which it is connected. In 
order to reduce the communication bandwidth 
between the low-level systems and the Image 
Processing Agents, which generally all run on 
different workstations, background difference 
and skin color information are not transmitted 
for each pixel. Instead, the image is divided 
into a 10x10 cell grid, and average values are 
reported for each cell. Currently, up to two 
faces can be reported for each image, where a 
face notification consists of its size and location 
in pan-tilt space. (The limit of two faces was 
arbitrarily chosen to simply the communication 
protocol and can easily be increased.) 

Each Image Processing Agent therefore 
receives a 209 dimensional feature vector, 
consisting of 100 background difference values, 
100 skin-tone match values, 6 faces values, the 
center of the image in pan-tilt coordinates, and a 
measure of the overall brightness of the image, 
at a frequency of somewhere between 10-30Hz. 

The agent uses these vectors to build 
statistical models of the events its camera is 
capable of detecting during a training session 
described in the next section. After building 
these models, it attempts to classify future 
incoming data to determine if any of the 
previously learned events reoccur. When they 
do, this information is passed to the global event 
processing system described in the next section. 
The agent is also responsible for several other 
tasks. The first of these is maintaining the 
quality of its background image, against which 
differences are computed to perform foreground 
object segmentation. Persistently unrecognized 
phenomena, such as a region being occluded 
without skin-tones being present, can lead the 
agent   to   incorporate   that   region   into   the 

background model. Agents that are connected 
to steerable cameras can also steer the cameras 
to track moving objects that catch their 
attention, even if these objects move away from 
the location of a previously learned event. The 
dynamic background synthesis performed by the 
low-level library makes this behavior possible. 

The Image Processing Agent constructs a 
window w of approximately two seconds worth 
of the most recently received feature vectors. 
We will call the size of this window k, so 
w =[v',...vi+k]. It uses this window to construct 
and subsequently update two special vectors 
after each new feature vector arrives. The first 
is an mean vector  vj =mean(vij,...,v

i/k).    The 

other is defined over the standard deviations of 
the    dimensions    in    the    feature    vectors, 

:<7(V<, 71+* )• Event     learning    and 

classification happens over these vectors, rather 
than over the incoming feature vectors directly. 

We define a local event £ as a tuple (v',<5") 
of vectors constructed from a window observing 
the event. By this, we mean that the physical 
event corresponding to £ was ocurring in the 
camera's foveal area while the window was 
being constructed. Each agent builds up a set 
of local events, LE, that it is capable of 
distinguishing during a training process 
discussed in the next session. (Each agent also 
constructs at least one "null" event.) Once the 
agent has been trained, it constantly attempts to 
classify the event "contained" in the window as 
one of its previously learned events. 

To determine the similarity between a 
currently observed window and a previously 
observed event, we define the distance between 
a window w (with v) and a local event 
Ej =(vJ,ffJ)e LE, letting « = |v|, as: 

1 distance (W,Ej) = -j= Y• 
a  +e 

This function very much resembles a 
renormalization according to a t-distribution 
with zero mean and unit variance. However, that 
is not our intended use for it. Rather, we are 
using it as a means to calculate a weighted 
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distance between what has currently been 
observed in the window w and some previously 
observed   event    £_,-,   where   dimensions   are 

inversely weighted in proportion to how noisy 
their signals are. The e factor is used to avoid 
difficulties in case a particular dimension has 
zero variance. 

The agent selects   minEeLE(distance(W,Ej)) 

as the most likely event to be occuring. 
However, events can be partially activated, in 
that multiple explanations for whatever is 
currently being observed will be passed on to 
the global event system discussed in the next 
session. It is expected in this case that data 
from other cameras will help disambiguate the 
room-level event actually being observed. If an 
agent is asked to verify whether a local-event is 
occuring as part of this determination, it will 
attempt to sense the event by forcing whichever 
feature-vector dimensions it has control over to 
take on the values associated with the event in 
question. At present, this is limited to pan-tilt 
values corresponding to the local event; 
asserting these values causes the low-level 
library to move the camera to that orientation. 

4.3 Global Event Processing 
Global events correspond to qualitative models of how a 
single perceptual event within Hal is simultaneously 
perceived by all of the cameras that can see it. There are 
two mechanisms through which global events are created 
and/or updated. The first is through an explicit training 
scenario in which Hal guides users through a series of 
interactions. The second is a more complicated 
mechanism where Hal searches for statistically significant 
temporal co-occurrences of events and infers they are 
related. 

Hal is built on top of a subset of a Room-Perception 
Application Programming Interface (API) that describes 
the types of events an abstract Intelligent Environment 
might sense going on within it, which we simply call 
room events. People writing applications for Hal 
interface with the perceptual systems via this API, so they 
can, for example, write code that refers to someone sitting 
on the middle of couch without having any knowledge of 
how the perceptual systems work or how this event is 
recognized by the room. The subset of the API Hal 
implements has a hierarchy of events within it, such as 
"Room Enter," "Room Exit," "Sitting Down, "Sitting on 
Couch," "Standing by Object," etc. 

When Hal is initially configured, it leads the user 
through a training scenario in order to learn what it is like 
to observe these events. For each fixed camera, this is 
simply a matter of determining whether there is an 
unrecognized event in its field of view. The steerable 
cameras, however, are swept through their range of pan- 
tilt values in order to locate a new event. Once they have 
found and centered it, they construct a local event model 
as described above to represent it. For example, training 
the "Room Enter" event occurs as follows. Hal says, 
"Hello, please enter the room." The user then walks 
inside and stands in the doorway. Hal finds them via 
Camera D and says, "Please remain still for one 
moment. " Hal then sweeps the steerable cameras looking 
for an unrecognized event. As the cameras find and 
center the user, Hal says "Aha! I've found you! Thank 
you for training. " A more sophisticated approach might 
involve the vision systems exchanging color histogram 
information to insure they are indeed looking at the same 
event. However, we assume that simultaneous new room 
events do not occur during training, so there is currently 
no need to resolve them. 

By determining which local events are constructed 
and/or activated while training a room-level event, Hal 
builds qualitative models of the room event with reference 
to them. If the user does something which triggers the 
associated local-events of a room event, Hal triggers the 
appropriate Room-Perception API event, such as 
"Standing by bookcase," and sends it to any applications 
that have registered they are interested in such events. 

A natural extension of the system at this level would 
be to build a Markov model of transitions among events 
from observations of typical usage patterns. This model 
could be used during event transitions to turn steerable 
cameras preferentially towards events that are more likely 
to occur, before they actually happen. 

Room events can also be partially activated, meaning 
some of their composite events have been triggered but 
not with sufficient confidence to actually be sure the 
event has taken place. Hal will then try to assert the non- 
active local events according to the mechanism described 
above to see if they are currently taking place. Simple 
statistical confidence intervals over these local events are 
then used to determine whether something of interest has 
actually happened. Some care must be taken with this 
mechanism to insure that events that are transient, such as 
someone walking through a doorway, have not actually 
completed by the time the steerable cameras turn to check 
for them. For this reason, the overhead camera in the 
doorway produces only optical flow information at 30Hz, 
so that its local-events are activated as quickly as 
possible. Within less than .5 seconds of someone walking 
through the doorway, whichever steerable camera is free 
to verify the event is already turning to look at it. 

We are also interested in using this mechanism to 
connect  the  room's   visual   perception  with   its  other 
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sensory modalities. For example, we have empirically 
determined that people tend to speak about objects they 
are closer to and therefore we dynamically bias Hal's 
speech recognition models with information obtained 
from its tracking system. These biases are currently hand- 
coded, but it seems feasible to learn them via temporal 
correspondences in a manner very similar to how Hal's 
visual event acquisition currently operates. 

14.Want. R.; Schilit, B.; Adams, N.; Gold. R.: Petersen. K.; 
Goldberg,  D.;  Ellis. J.;  and Weiser.  M.     The  ParcTab 
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Abstract. This paper describes the design and implementation of a natural language interface to a highly 
interactive space known as the Intelligent Room. We introduce a data structure called a recognition 
forest, which simplifies incorporation of non-linguistic contextual information about the human-level 
events going on in the Intelligent Room into its speech understanding system. This aim of using context 
has been to allow multiple applications—all of which support a relatively high degree of natural syntactic 
variability—to run simultaneously in the Intelligent Room. 

1 Introduction 

This paper describes the design and implementation of the natural language interface to the MIT Artificial 
Intelligence Lab's Intelligent Room Project [3,5]. The Intelligent Room explores natural interaction with 
embedded computational systems. It has a host of computer vision and speech understanding systems that 
connect it to ordinary, human-level events occurring within it. 
In this paper, we are concerned with the overall design and implementation of the 
Intelligent Room's support for natural language interactions. The main feature of this is 
the recognition forest, a linguistic data structure that simplifies incorporation of contextual 
information into the room's speech understanding system and allows the room's multiple 
applications to independently access its speech modality. Our motivation for using context 
is: to help manage the combinatorial explosion in processing time that followed the 
incorporation of natural syntactic variability into our speech recognition system; to allow 
for the incorporation of non-linguistic information into linguistic contextual model; to 
disambiguate diectic references; and to provide spoken language input to coexisting, 
independent applications. 
In this paper, we present the recognition forest as a useful tool for creating spoken 
language interfaces to intelligent, interactive spaces. We will also discuss how it 
contributed towards satisfying the goals that shaped the design of the Intelligent Room's 
natural language interface, including: 

1. To support unimodal speech interactions, i.e. interactions that do not tie the user to a keyboard, mouse or 
display. 

2. To leverage off very strong notions of context inherent in room applications to allow for better speech 
understanding. 

This material is based upon work supported by the Advanced Research Projects Agency of the Department of 
Defense under contract number F30602—94—C—0204, monitored through Rome Laboratory. 
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3. To allow multiple speech-enabled room applications to coexist without a heavyweight central controller. 

4. To provide for dynamic sets of recognized utterances. 

5. To employ only very shallow linguistic knowledge and representations. 

The decision to minimize the amount of linguistic knowledge contained in our system was 
made to facilitate the room's infrastructure and application development by a wide range 
of people, particularly computer science undergraduates who have no formal exposure to 
computational linguistics. Our system needed to be accessible by all researchers in the 
project, regardless of their background. We believer that many of the issues discussed in 
this paper will remain useful when applied to systems with more sophisticated linguistic 
representations. Given the increasingly widespread interest in highly interactive, 
computational environments [7], many other designers and implementers will be faced will 
similar challenges, and we hope our approach will be generally useful for other systems. 
Over the past three decades there have been significant research efforts devoted to the 
development of natural language interfaces. We divide these into three distinct classes 
based on the modality chosen for natural language interaction. The first consists of text- 
only dialog systems, such as SHRDLU [12], Lunar [13], and the multitude of database 
query systems, such as START [8]. In these systems typewritten text is used for input and 
output. With the advent of improved speech recognition and synthesis, efforts were made 
to integrate these technologies into natural language dialog systems—our second 
category—such as those in [8,11,14]. However, with these the user is still expected to 
interact with the system at a terminal where the display of queries and recognition results 
are perused and then potentially disambiguated by the user. Many of these systems also 
make use of "push-to-speak button," in order to allow the user to signal the speech 
recognizer that the next utterance is to be treated as input to the system. The final class of 
systems is those that operate only in the speech modality, such as SUNDIAL [1], and 
Jupiter [3], two telephone communication systems for answering domain specific queries. 
Our approach represents a significant departure from those described above. The choice of 
the ability to operate in a voice-only modality separates it from the text-only and mixed 
voice and screen systems. This departure requires an emphasis on careful planning and 
structuring of dialog to take advantage of speech while also overcoming some of the 
difficulties inherent in the speech modality. Our approach is different from that of the 
other voice-only language projects in that: we are not tackling applications that 
monopolize the user's attention or require excessive word knowledge; we allow people 
interacting with the Intelligent Room to readily change application contexts; we place 
more emphasis on speech recognition in noisy, multi-user environments where people are 
primarily talking to one another; we seek to plan interactions with minimum intrusiveness; 
and we provide an interface to multiple applications simultaneously. Our system is not 
intended to be task or domain specific; it is used in the same way as a keyboard and 
mouse—a general input device simultaneously used by many applications. It is a tool, not 
an end in itself. 

In the next section we briefly motivate and describe the Intelligent Room as the platform and motivation 
for our work. Next, we present a user's perspective of the Intelligent Room. In section 4 we outline the 
room's computational architecture and linguistic systems.   Then we give several representative linguistic 
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interactions illustrating the concepts we have described.   Finally, we discuss limitations inherent in our 
approach and possible remedies. 

2 The Intelligent Room 

We now proceed to briefly describe the Intelligent Room as the platform for our research.   More in depth 
discussion of the room can be found in [6] and details of its multimodal resolution are contained in [5]. 
The Intelligent Room is a research platform for exploring the design of intelligent 
environments [7]. The Intelligent Room was created to experiment with different forms of 
natural, multimodal human-computer interaction (HCI) during what is traditionally 
considered non-computational activity. It is equipped with numerous computer vision, 
speech and gesture recognition systems that connect it to what its inhabitants are doing and 
saying. The motivation for researching intelligent environments is to bring computation 
into the real, physical world. The goal is to allow computers to participate in human-level 
activities that have never previously involved computation and to allow people to interact 
with computational systems the way they would with other people: via gesture, voice, 
movement, and context. 
The Intelligent Room is a space populated by computer controlled devices; these include 
overhead LCD projectors and displays, audio/visual multiplexers, VCRs, drapes, blinds, 
stereos, steerable video cameras, etc. The video cameras are used by the room's computer 
vision systems. These vision systems are detailed in [6], but of relevance here are the 
following: a person tracking system that can locate people in real-time as they move about 
the room; gesture recognition of both finger and laser pointing on either of the room's 
projected LCD displays; and a system that specifically notices when people sit down on 
particular pieces of furniture. 
Other research in intelligent environments [2,9,10] has focused more on development of 
computer vision and other sensing technologies at the expense of linguistic interactions. 
We believe, however, that language is fundamental to having meaningful and complex 
interactions with these sophisticated, interactive spaces. In particular, we are interested in 
speech understanding systems that function more like a language modality than a voice 
simulation of a keyboard or mouse. Although the Intelligent Room's current linguistic 
systems require a great deal of development before they near this goal, we believe our 
approach is an extensible first approximation. 

3 User Interactions 

People in the Intelligent Room wear wireless lapel microphones that transmit to the speech understanding 
system described below. By default, the room ignores the spoken utterances of its inhabitants, which are 
generally directed to other people within the room. This state is known as "the room being asleep."2 To 
obtain the room's attention, a user stops speaking for a moment and then says the word "Computer." The 
room immediately responds with an audible, quiet chirp from an overhead speaker to indicate it is paying 
attention. The user then has a two second window in which to begin speaking to the room. If the room is 
unable to recognize any utterances starting within that period, it silently goes back to sleep until explicitly 

'' The room's vision systems continue to respond to users even when it is not listening for their verbal input. 
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addressed again. However, if what the user says is recognized, the room responds with an audible click and 
then under most circumstances it returns to sleep. This hands- and eyes-free style of interaction coupled with 
audio feedback allows a user to ignore the room's computational presence until she explicitly needs to 
communicate with it. There is no need to do anything other than preface spoken utterances with the cue 
Computer to enable verbal interaction. Thus, a user can interact with the room easily, regardless of her 
proximity to a keyboard or monitor. Additionally, explicitly cueing the room minimizes the likelihood that 
extraneous speech or noise will incorrectly trigger a recognition event. Importantly, it also allows detection 
of non-recognition events, i.e. times when the room is not able to understanding something the user is 
explicitly trying to convey. In the event the room erroneously wakes up due to an incorrect recognition 
event, it will either go back to sleep automatically when the two second window expires or the user can 
explicitly tell it to "go to sleep" upon hearing the wake-up chirp. 
When the room is awake, it is listening for a specific set of utterances contained in its 
recognition forest, a data structure described in the next section. Under appropriate 
circumstances, users can also freely and continuously dictate expressions to the room 
unconstrained by any grammar or rule set. This capability is used, for example, during 
information retrieval queries (such as a web search) for which it is unreasonable to expect 
that the room's grammars already contain the sought after phrase. In these interactions, the 
room repeats the final utterance back to the user to verify correct recognition. The lag time 
between user speech and room verification is extremely small, and this mode of interaction 
has proved to be quite useful provided input is short in length. We note here that the room 
is responsible for switching between the constrained and diction speech modes; users do 
not explicitly change this state. 
The room can also remain awake listening for utterances. Someone intending on a 
prolonged series of verbal interactions can simply tell the room to "stay awake." The room 
continues to provide an audible click after recognized statements, but these statements no 
longer need to be preceded by the spoken Computer cue. In addition, the room can wake 
itself up if it expects an utterance from the user for some reason. For example, when the 
room asks the user a question, it will stay awake for several seconds waiting for an answer. 
If that period ends without a response being given, the room provides an audio timeout 
signal to indicate that it is going back to sleep. 

4 Speech Understanding 

In this section we present the Intelligent Room's speech understanding system. We begin with a discussion 
of the interaction between the software agents that control the operation of the room and the room's set of 
recognition grammars. 
The Intelligent Room is controlled by a modular system of approximately 100 distinct, 
intercommunicating software agents that run on several networked workstations. These 
agents' primary task is to connect various components of the room (e.g., vision and speech 
recognition systems) to each other as well as to internal and external stores of information 
(e.g., a person locator or an information retrieval system). Essentially, these agents are 
intelligent computational glue for interconnecting all of the room's components and 
moving information among them. 
The Intelligent Room listens for continuous speech utterances contained in a forest (or set) 
of multiple grammars, which we call the recognition forest. Each grammar in the 
recognition forest is created by one of the room's software agents (see Figure 1), which 
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receives notification when any utterance contained in one of its grammars is heard. Agents 
do not necessarily know nor need to know of any other grammars or agents. (We note for 
clarification that a single agent is allowed and actually encouraged to create multiple 
grammars.) The notification message for a recognized utterance contains a parse tree, 
which the agent can manipulate to determine its content. In the recognition forest, a 
grammar is called "active" if the room is currently listening for it and "inactive" otherwise. 
Active grammars are rank ordered in terms of their expected likelihood of being heard. 
Fundamental to our design is that all of the grammars must be constrained to highly 
specific contexts among which some component of the Intelligent Room is capable of 
distinguishing. Instead of keeping a single enormous recognition grammar active, the 
room collectively keeps subsets of small grammars active in parallel, given what it 

Fig. 1. Software agents creating the forest of context free recognition grammars. Each 
small triangle represents a grammar, and each face represents a software agent. Active 
grammars are lightly colored. Inactive grammars are crossed out. The uppermost, 
demarcated region contains universal grammars that are always active. 

currently expects to hear. The key assumption here is that certain types of utterances are 
only likely to be said under particular circumstances. These may be related to where 
someone is spatially, the history of her previous interactions, how she is gesturing, what 
devices in the room are doing, etc. At the simplest level, this can range from the 
implausibility of someone saying "stop the video," when none is playing, to more complex 
dependencies, such as the meaninglessness of asking "What's the weather there?" if no 
geographic entity has somehow been brought to the room's attention. 
The context-dependency of these grammars is not contained within the linguistic 
formalism itself, which allows us to use an extremely simple representation. Rather, the 
room's software agents are responsible for setting and modifying the activation states of 
grammars they create based on whatever information the room's other software agents can 
provide about current goings on in and state of the room. (See Figure 2.) For example, if 
the room starts showing a video clip, the agent that controls the showing of videos 
activates the grammars that involve VCR operation. When the clip stops, these grammars 
are in turn deactivated. More interesting cues can involve the location of someone inside 
the room. For example, the fact that someone has moved near an interactive displayed 
map is sufficient reason for the room to pay increased attention for spoken utterances 
involving geographic information. However, until that cue is received, it seems quite 
reasonable not only for the room to ignore such requests but to not recognize them at all 
especially given the error rate of current speech recognition technology. We note there 
may be cases where this is inappropriate; for example, the room might alternatively need to 
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recognize out-of-context utterances in order to provide guidance to a user. We are 
investigating techniques for dealing with this, such as having the room iteratively broaden 
the set of active grammars and proactively offer assistance in case the user's speech is not 
being recognized. 
When users shift to a new application context, the system lowers the relative rankings of 
and eventually deactivates grammars from the previous contexts according to a least- 
recently-used strategy. Thus, agents need not explicitly deactivate all of their grammars 
nor even know all appropriate circumstances for doing so. 
Notions of context can also help adjust expected probabilities of utterances. Even in 
systems where all utterances are valid at all times, it is generally not the case that all 
utterances are equally likely at all times. For example, tracking context can help 
disambiguate the output of bigram-based speech recognition systems that return the 
probabilistically weighted N-best set of utterances for each recognition event. We used 
this scheme to process the results returned by the Galaxy System [14], which was the first 
speech recognition system used in the early days of the Intelligent Room. 
We have found it useful to have several different notions of ongoing room context for 
determining which grammars are active at any given moment. However, no single agent 
defines "the context" but rather the context is a product of many loosely connected entities. 
In ranked order, these consist of the following: 

1. Always active grammars - These are for low-level control and providing feedback to the room. These 
grammars allow direct manipulation of room state; we have found it essential for users to feel they control 
the room's physical infrastructure if they are to feel comfortable interacting with it. These grammars also 
allow the manual adjustment of various room parameters in the event of incorrect data from one of the 
room's input modalities. 

2. Context shifting grammars - These are explicit cues for the room to change its context. They generally 
start new room activities and automatically lead to changes in the contents of the next two categories. 

3. Current applications' grammars — These are application specific verbal interactions with the room given 
its current state. The room frequently modifies these grammars while it is running. 

4. Previous applications' grammars — These are for interacting with previously run applications. These are 
particularly useful in case of inadvertent or incorrect context shift or if some device failed to respond 
appropriately and must be corrected via verbal interaction. Backgrounded tasks often have grammars here 
so they can be quickly recalled and resumed. 

Agents can also modify the structure and content of an extant grammar. This ability is 
used currently only for inserting and deleting noun phrases to reflect newly obtained 

time=i time=i+l 

Fig. 2. A transition in the forest of grammars. An agent can activate and deactivate its 
grammars based on context changes in the Intelligent Room. Notification of context 
changes comes in the form of messages from other room agents. 
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information. This can be gotten from: the user verbally dictating new phrases to the room; 
mechanical extraction from other sources, (e.g., anchor link text in web pages); or the 
room applying machine learning techniques to augment its vocabulary (as discussed 
below). 
Another advantage of the distributed nature of the grammars is individual agents can 
monitor their small piece of the overall context in a very simplistic fashion. For example, 
the VCR agent can pay attention to events only relevant to knowing whether the VCR is 
part of the context or not, and modify its associated grammars accordingly. This avoids 
the problem of clearly defining the overall context, and also eliminates the need for control 
logic for deciding which grammars should be active when. 

Underlying Speech Technology and Computational Complexity 

For processing spoken utterances, we use IBM's ViaVoice speech recognition system. ViaVoice is a 
commercially available system primarily used for continuous speech dictation. This, with its relatively low 
word accuracy for single word and short utterances, would have been an intolerable speech interface to the 
room. However, ViaVoice also supports explicit construction of continuous speech, context-free recognition 
grammars, which allow for much higher degrees of recognition accuracy. Via its Java interface, it also 
provides control over low-level aspects of its behavior to external applications, which makes it ideal for 
incorporating into other systems. 
We wanted the Intelligent Room's recognition grammars to be reasonably unconstrained. 
In particular, we wanted to allow people to interact with the room without memorizing 
scripts of recognized utterances or lists of permissible syntactic constructions. However, 
we found that as our grammars became increasingly large, speech recognition accuracy fell 
correspondingly. As room grammars started to support more than a few thousand 
individual utterances, recognition accuracy dropped below acceptable levels. 
There is a clear tradeoff between making the room's recognition grammars sufficiently 
large so that people can express themselves somewhat freely versus making the grammars 
small enough so that the system runs with high accuracy and in real-time. Thus, we 
decided to make use of the natural context specificity in room applications so that agents 
could dynamically activate different subsets of grammars depending on the context of the 
activity within the Intelligent Room. 

5 Sample Interactions 

The Intelligent Room supports a variety of narrow application domains, all of which can run simultaneously. 
The collection of all these domains in turn gives an extremely broad and flexible 'domain' encompassing a 
wide range of tasks. The distributed, independent control of the recognition forest allows for this—there is 
no need for a centralized controller. The room's applications range from simple voice control over physical 
devices to more complex multimodal scenarios involving position, gesture tracking and spoken dialog. We 
first outline these domains and then present two applications in more detail: 

1. Manual control over devices - These include the Intelligent Room's lights, blinds, drapes, VCRs, video displays, 
stereo components, etc. 

2. Manual interaction with modal subsystems - We have found it extremely useful to have direct verbal interactions with 
the room's modalities. These can be used to gather information about what the room is observing, to modify internal 
representations of its state, or to correct a perceptual error. It is also of enormous benefit to be able to verbally interact 
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with the room's vision systems while developing or debugging them, because it is generally impossible to manually 
interact with them at a workstation while remaining in the camera's foveal areas. 

3. Information access - There are many types of these interactions, including web browsing, weather reporting, 
accessing an online video collection, querying Haystack (a personal information manager), and the information 
retrieval system described below. The room also functions as a spoken language front-end to START, a natural 
language query database [9], 

4. Presentation manager - This allows the Intelligent Room to assist in multimedia presentations and is a demonstration 
of the room's information management capabilities. A lab tour guide agent that uses this application for presenting a 
broad overview of our laboratory's research to visitors has been previously described in [5]. 

5. Command post - This application provides the means to test full integration of all our modal subsystems and to 
experiment with different techniques for performing multimodal reconciliation. It is a mock command center for 
planning hurricane disaster relief. 

We now present two primarily linguistic interactions with the Intelligent Room. They are 
annotated with the changes made to the recognition forest to reflect the course of ongoing 
interactions. The first of these is the above-mentioned command post. It makes use of two 
interactive projected displays that respond to finger pointing gestures. The second 
interaction is a primarily unimodal dialog that allows users to interactively refine a 
document retrieval query. 
In the following interaction the user is attempting to plan disaster relief for a hurricane in 
the Virgin Islands. 

Command Post: 

User: "Computer, stay awake. " 
[The room will now listen for utterances without requiring they be prefaced by the word Computer.] 
[The person's approach of projected displays causes the room to pay attention to statements involving them. This is 
illustrated in Figure 3.] 

User: "Show me the Virgin Islands. " 
Room:    "I'm showing the map on the display next to you." 
[Room shows map on video display closest to the user.] 
[Room activates grammars associated with the map.] 
[User now points with his finger at St. Thomas.] 

[Room adds nouns (such as city names) relating to St. Thomas to active grammars.] 
[Room now considers St. Thomas the default geographical entity.] 
User:       "Zoom in." 
[Room zooms in to St. Thomas.] 
User:       "How far away is Hurricane Marilyn ? " 

Room: "The distance between Hurricane Marilyn and the city of Charlotte Amalie located in St. Thomas is 
145 miles." 

User:       " Where's the nearest disaster field office ? " 
[Room highlights them on the map.] 

Room: "The St. Thomas DFO is located one mile outside of Charlotte Amalie. There is a new weather 
forecast available. Do you want to see it?" 

[Room activates a grammar containing possible expected responses for this question.] 
User:      "Yes, show me the satellite image." 
[Room displays image on adjacent projected display.] 
[Additional weather grammars are now activated.] 

The following interaction is an example of the user dynamically switching contexts while in the midst of 
interacting with the Intelligent Room. The room has an information retrieval system that helps users refine 
their queries by asking them questions that maximally disambiguate it.  These questions are determined by 
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searching a document tree obtained from the Alta Vista web search engine for phrases with the highest 
entropy levels. 

Information retrieval: 

User: "Computer, I need information. " 
[Because user didn't specify a topic, room will ask for it to be dictated.] 
Room:    "About what? Please tell me." 
User: "Software agents." 
Room:     "Is software agents correct?" 
User: "Yes." 

[Room will now remember this phrase in the context of information retrieval to allow recognition of it in the future. 
Other agents might eavesdrop and also add this word for their own purposes, in an attempt to anticipate the user's 
eventual needs.] 
Room: "Thank you. Please wait a moment... Are you interested in HCI, Research & Indexes, or General 

AI?" 
[Room activates a grammar of expected responses based on these topics.] 
User: "I'm interested in HCI. " 

[User can respond with continuous speech even though the phrase "H C I" was not in any room grammar before this 
interaction, since it was just added.] 

[Above constructed response grammar is deactivated.] 
Room: "Okay, are any of these documents of interest? I will put them on the left display." 

[Room displays document list on wall.] 
[Room activates a response grammar that incorporates the titles of displayed documents.] 

User:       "Please move them to the display near the window." 
[Room does so] 

The above examples illustrate how the room manages the recognition forest via data from both its perception 
subsystems and from expectations of what the user is likely to say in a given situation. This allows the room 
to approximate natural linguistic interactions with the user. Of course, it is still somewhat stilted, and the user 
cannot make complete non-sequiturs. Overall, however, the main problem we have is convincing the user to 
push the limits and speak naturally, rather than linguistically downsizing and second-guessing the room's 
capabilities, but this fault is prevalent in most, if not all, current speech understanding systems. 

6 Achieving Design Goals 

We review the design goals presented in the first section, considering not only how well they were achieved, 
but possible remedies for where our approach was unsuccessful. 

A language modality 
A key aspect of the Intelligent Room is for an occupant to have full access to all of the room's computational 
power regardless of where in the room she is. She should not need to type at a particular keyboard nor 
interact with a particular display to interact with the room, and in fact, the room does not have a keyboard or 
mouse within it. 

Therefore, we decided that in many circumstances speech interactions had to be unimodal. It could not be 
the case that the room would need to display candidates for recognized utterances, thereby allowing the user 
to select among them or to disambiguate didactic references. This is contrasted with the approach of [11,14] 
where users provide critical feedback during the recognition process via a graphical user interface. Our 
approach of having the room ask the user when it is unsure of something can be somewhat intrusive, but it is 
certainly no more so than a graphical interface. 
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Context sensitivity 
We wanted to make use of context in terms of both the room and user's states to be able to both resolve 
diectic references and control sets of possible utterances and who should receive those utterances. As in 
most speech understanding efforts, we wanted to support some measure of natural syntactic variability on the 
part of a person interacting with room. Our intent was to leverage off the well-defined notions of context 
inherent in the Intelligent Room's application domains to keep the total active grammar size small at any 
given time. This can be enormously frustrating if the room inappropriately deactivates a grammar to which 
the user would still like to refer. We are currently exploring techniques for dealing with this, such as 
reprocessing the spoken audio signal under an iteratively broadened set of grammars. 

Non-static recognition sets 
We sought to avoid limiting the room to a static set of recognition grammars.   It would not have been 
reasonable to suppose that we could determine everything in advance users would want to say, and it would 
have made routine tasks like information retrieval difficult, if not impossible. 
The ability of agents to change grammars on the fly has proved to be extremely useful, in 
applications such ranging from web browsing, where link anchor text is captured, to 
information retrieval, which typically involves an iterative query refinement process. The 
ability of the room to incorporate user-dictated noun-phrases into its recognition grammars 
is one of the capabilities that most impresses new users. 
On a larger scale, adding agents should be easy. By having individual agents control their 
own grammars and activation states, agents can indeed be added quickly and without 
worry as to their disrupting other agents' interfaces. 

Simplicity 
Finally, we were also interested in employing very shallow linguistic knowledge during implementation to 
minimize the knowledge engineering problem.     Given that new room applications are being created on a 
regular basis, it is not possible to build carefully handcrafted linguistic models of expected input. Speech 
orientated agents have proliferated markedly since our system came up, to a point of fault. Speech is such a 
natural and easy modality that the temptation to solve all problems with it has distracted us from really 
striving for a multi-modal system that pays attention to harder to discern inputs, such as gesture. 
Future work on the system includes incorporating a machine learning mechanism into the 
recognition forest so that it can learn the probabilities of individual grammars be used in 
particular application contexts. We are also interested in learning the transition 
probabilities among the grammars, to better predict activation states without requiring 
explicit action be taken by the room's software agents. 
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Abstract. Intelligent Environments (IEs) have specific computational properties that generally 
distinguish them from other computational systems. They have large numbers of hardware and software 
components that need to be interconnected. Their infrastructures tend to be highly distributed, reflecting 
both the distributed nature of the real world and the IEs' need for large amounts of computational power. 
They also tend to be highly dynamic and require reconfiguration and resource management on the fly as 
their components and inhabitants change, and as they adjust their operation to suit the learned preferences 
of their users. Because IEs generally have multimodal interfaces, they also usually have high degrees of 
parallelism for resolving multiple, simultaneous events. Finally, debugging IEs present unique challenges 
to their creators, not only because of their distributed parallelism, but also because of the difficulty of 
pinning down their "state" in a formal computational sense. This paper describes Metaglue, an extension 
to the Java programming language for building software agent systems for controlling Intelligent 
Environments that has been specifically designed to address these needs. Metaglue has been developed 
as part of the MIT Artificial Intelligence Lab's Intelligent Room Project, which has spent the past four 
years designing Intelligent Environments for research in Human-Computer Interaction. 

Introduction 

Research on highly interactive spaces, generally known as Intelligent Environments, has 
become quite popular recently. Although their 
precise applications, perceptual technologies, and control architectures vary a great deal 
from project to project, the raisons d'etre of these systems are generally quite similar. 
They are aimed at allowing computational systems to understand people on our own terms, 
frequently while we are busy with activities that have never before involved computation. 
EEs seek to connect computational systems to the real world around them and the people 
who inhabit it. 
This paper presents what we believe are general computational properties and requirements 
for EEs, based on our experience over the past four years with the Intelligent Room Project 
at the MIT Artificial Intelligence Lab. Although many of the published descriptions of IEs 
[4] differ in their particulars, it is clear that we have not been alone in confronting some of 

This material is based upon work supported by the Advanced Research Projects Agency of the Department of 
Defense under contract number F30602—94—C—0204, monitored through Rome Laboratory. 
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the frustrating aspects of engineering these complex systems. Based on this experience, we 
have developed Metaglue, a specialized language for building systems of interactive, 
distributed computations, which are at the heart of so many IEs. Metaglue, an extension to 
the Java programming language, provides linguistic primitives that address the specific 
computational requirements of intelligent environments. These include the need to: 
interconnect and manage large numbers of disparate hardware and software components; 
control assemblies of interacting software agents en masse; operate in real-time; 
dynamically add and subtract components to a running system without interrupting its 
operation; change/upgrade components without taking down the system; control allocation 
of resources; and provide a means to capture persistent state information. 

Metaglue is necessary because traditional programming languages (such as C, Java, and Lisp) do not 
provide support for coping with these issues. There are currently several other research systems for creating 
assemblies of software agents [7,8,9], which provide low-level functionality, e.g., support for mobile agents 
and directory services. These features are necessary but not sufficient. Because Metaglue provides high- 
level tools specifically relevant to creating software controllers for IEs, we hope to make it available for more 
widespread use by the IE community. 
Much of our discussion will focus on Hal, our most recently constructed Intelligent Room 
[3,5], where approximately 100 Metaglue agents control Hal and interconnect its 
components. However, we believe the issues raised here extend beyond the particulars of 
Hal and are important for a wide range of intelligent environments. 
Hal is a small room within our lab and is equipped with microphones, seven video 

cameras, and a variety of audio-visual output devices that it can directly control. Hal was 
designed to explore a wide range of interactions involving futuristic residential spaces - 
stressing quality of life - and commercial spaces - stressing information management. We 
have therefore created applications in Hal that support entertainment, teleconferencing, 
business meetings, military command post scenarios, and information retrieval. 
Next, we expand on our list of computational properties for IEs and examine the reasons 
behind them. We then discuss design considerations of the Metaglue system, and how it 
specifically addresses the perceived needs of IEs. In this, we directly trace how the issues 
raised in the next section are satisfied by capabilities incorporated into Metaglue. Finally, 
we close with an evaluation of the Metaglue system and directions for future research. 

Computational Properties of Intelligent Environments 

Intelligent Environments by and large share a number of computational properties due to commonalties in 
how they internally function and externally interact with their users. Of course, not every IE will identically 
share all of these characteristics, but we believe examining them even briefly makes concrete many of the 
issues that IE designers are faced with and should address directly. We not only hope to further discussion 
on these issues in the IE community, but to motivate the development of other general purpose tools such as 
Metaglue. 
We note that when multiple people are allowed to interact simultaneously with a single IE, 
many of the issues discussed below are greatly exacerbated. Space limitations preclude 
addressing this issue in detail. 
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Distributed, modular systems need computational glue 

Intelligent Environments contain a multitude of subsystems comprising their perceptual 
interfaces, software applications, hardware device connections, and mechanisms for 
internal control. Even though each IE is created in its own way for its own purpose, IEs 
are generally built out of similar components. 
Thus, IEs require some way to glue all of these components together and coordinate their 
interactions.   These components also generally cannot co-exist on a single computer, due 
to hardware constraints and the need for environments to respond in real-time to their 
users. It is not uncommon for individual computer vision or speech understanding 
applications to consume the resources of an entire workstation, and there is no reason to 
believe this exclusivity will be diminished as processor speeds increase in the future. 
Many of these systems perform progressive real-time searches that naturally generalize to 
consume all increases in available computational power. 
Frequently, these components, either off the shelf or research programs in their own right, 
are not designed to work together, so not only must they be connected, but there needs to 
be some way of expressing the "logic" of this interconnection. In other words, inter- 
component connections are not merely protocols, but must also contain the explicit 
knowledge of how to use these protocols. Thus, viewing the connections simply as 
Application Programming Interfaces (APIs) is insufficient. For example, consider 
connecting a speech recognition system and a web browser, so that users can navigate links 
by speaking the text contained in them. Here, the computational glue would include a 
mechanism that dynamically updates a recognition grammar with the link text whenever 
the user goes to a new web page; simply having APIs to both of these applications is 
necessary but not sufficient. 
More generally, enormous amounts of control code go into building IEs, much of it dealing 
with how connections among its pieces should be managed. (See [1,2].) 

Resource management is essential 

Interactions among system components in an IE can be exceedingly complex. Resources, 
such as video displays or computational power, can be scarce and need to be shared among 
different applications. For example, in Hal, multiple computer vision systems share 
individual video cameras because they are a relatively expensive resource [6]. Conflicts 
can occur when multiple applications in an IE all want to display information on a single 
video display or speak to the user simultaneously. One of the largest surprises while 
developing Hal was that even seemingly simple issues, such as displaying a video, have 
wide spread repercussions on other parts of the running system because their resources are 
pulled out from under them. We discuss this at greater length in the next section. Finally, 
even in an environment with ample resources for a single user, conflicts can unknowingly 
arise when multiple people attempt to interact with it simultaneously. 
Thus, IEs need sophisticated resource management capabilities, particularly to let them 
scale properly as new applications and capabilities are added. 
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Configurations change dynamically 
IEs can be highly dynamic systems. In the prescient words of Weiser - referring to 
Ubiquitous Computing but equally relevant to IEs - "New software ... may be needed at 
any time, and you'll never be able to shut off everything in the room at once ... 
functionality may shrink and grow to fit dynamically changing needs" [12]. People may 
come and go at will, bringing with them devices such as PDAs that temporarily connect 
with an IEs existing computational infrastructure. 
In a developing system such as Hal, new hardware and software components are 
incorporated on a regular basis. It should be possible to add them to a running system 
without restarting unrelated components. In fact, under many circumstances, new 
permanent components should dynamically integrate themselves into an IE without 
interrupting its operation at all. 
Even within the confines of a static IE, users may readily switch between different aspects 
of its functionality. For example Hal supports teleconferencing and information 
management applications and users readily switching between the two is quite natural; 
often during meetings the need arises to get more information about something. These 
"context" changes can have far reaching effects. For example, an IE may need to 
simultaneously start new underlying applications, activate different speech recognition 
grammars, and modify the configurations of other perceptual systems. 

State is precious 
Not only may new components need to be incorporated into a running IE, but pieces of a 
running system may need to be reloaded into it as well. As with any other software 
engineering effort, creating IEs require an iterative edit-recompile-run process while 
testing new features and eliminating bugs. However, if the entire system had to be 
restarted each time one of its components changed, development would be prohibitively 
time-consuming. Our Hal environment has literally dozens of hardware and software 
components connected to approximately 100 Metaglue agents. Having to bring this system 
completely down to modify it would long ago have made further development a cause of 
endless frustration. 

Furthermore, IEs acquire state through interactions with users. Attempting to trace a bug by forcing a 
person to repeat a sequence of interactions that may have spanned several hours would be outrageous. To 
exacerbate the problem, state is acquired not only through human interactions, but also through any activities 
Hal has engaged in, such as information retrieval. A weather report or CNN headline that caused Hal to take 
some action may have long since changed and is not recoverable. 
The most critical part of Hal's state comes from information it learns while observing its 
users. Hal has several machine learning systems for learning about users' preferences and 
activities. These systems have no straightforward way to unlearn and return to a previous 
coherent state. Checkpointing in the style of reliable transaction systems can partially 
ameliorate these problems with respect to the local state of individual components. 
However, when IEs are asynchronous and distributed, repeating a particular global state 
can be, practically speaking, impossible to achieve. (One technique we have been 
investigating is allowing an IE to essentially simulate itself by replaying previously 
observed and recorded events.) 
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Thus, there is a clear need for an IE's software architecture to permit a kind of dynamism 
rare in conventional computational systems. We would like to stop, modify, and reload 
components of a running system and have them reintegrate into the overall computation 
with as much of their state intact as possible. 

IEs model the parallelism of the real world 
Supporting natural human computer interaction requires that IEs have some handle on 
multiple ways that a user may interact with them. People speak, gesture, move, and emote 
simultaneously, and IEs need to have some capacity to cope with this, even on the part of a 
single user.   This is not to say they need to understand the full range of human discourse 
to be useful. Far from it, IEs that consistently - and most importantly, predictably - 
understand a small subset of interactions are far preferable from an HCI perspective to 
ones that always leave users guessing if some particular input will be understood. 

Nevertheless, IEs generally have multimodal interfaces which requires they have sufficient parallelism for 
resolving multiple, simultaneous events. For example, if a user walks to a displayed map, points somewhere 
and says, "What's the weather here today?" and then immediately walks away, the system must be able to 
discover where they were pointing when they said the word "here." Dealing with multiple users 
simultaneously again simply exacerbates the problem. 
Thus, IEs need at least as much parallelism as the phenomena they are trying to 
understand. In fact they may need a great deal more for background processing, which 
leads to the next item. 

Real-time response 
It almost goes without saying that IEs need to be responsive to their users. Particularly due 
to the fact that many IEs do not have traditional computer monitors so users can get a 
handle of the system's inner activity, it is astonishingly frustrating when an IE does not 
respond quickly to user input. This is another point supporting the basic need for parallel 
architectures in an IE. The parts of the system that acknowledge and react to users must be 
immediately responsive even if other parts of the system, for example, in the midst of 
processing an information retrieval query, require more time to respond. 
This also requires that the mechanism for interconnecting an EE's components and 
processing their data be able to keep up with the underlying external systems. For 
example, in Hal, five C-language-based computer vision systems, each producing several 
hundred dimensional data vectors at a rate of up to 30 a second, all connect to a Metaglue- 
based visual event classification system which must process all this data in real-time. 

Debugging is difficult 
Independently of IEs, debugging distributed, asynchronous systems can be a nightmare. If 
some high-level system event fails to occur, determining which component is to blame is 
usually a long, involved process. Furthermore, understanding the operation of distributed, 
loosely coupled components running in parallel - as does the controller for an IE - where 
different serializations can have different system-wide effects, is best, but rarely 
successfully, avoided. In an IE, this problem is made all the worse by the presence of 
many, sometimes exotic, hardware components, such as video multiplexers, that 
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themselves have internal state that may only be imperfectly modeled in their software 
drivers. 
Good software engineering practices go a long way towards dealing with this problem, but 
a more comprehensive solution would require the development of new types of debugging 
strategies. (In the next section, we see that Metaglue only makes the most preliminary 
efforts in this direction.) 

Metaglue 

We first discuss the design of Metaglue from a programming language perspective, to give potential users a 
sense of what it would be like to work with it. We then proceed to illustrate how particular features in 
Metaglue address many of the computational requirements for IEs discussed in the previous section. By 
necessity, this section is intended only to sketch and motivate the capabilities of the Metaglue system and 
should not be viewed as a complete description of the language. More detail about Metaglue's internals can 
be found in [10,11]. (Some examples in this section require cursory knowledge of the Java programming 
language.) 

The Design 
Metaglue is an extension to the Java programming language that introduces a new Agent class. By extending 
this class, user-written agents can access the special Metaglue methods discussed below.   Metaglue has a 
post-compiler, which is run over Java-compiled class files to generate new Metaglue agents.  Metaglue also 
includes a runtime platform, called the Metaglue Virtual Machine, on which its agents run.   The overhead 
added by this infrastructure to standard Java programs that are turned into Metaglue agents is negligible. 
Our goal with Metaglue was to add a very small number of primitives to the Java language 
to make it easy to write agents. Method invocations between agents, even if they are on 
different workstations, look exactly like local method calls in Java. Thus, Metaglue 
agents, minus the few Metaglue-specific primitives, look almost exactly like ordinary Java 
programs. This makes it easy to transform regular Java source files into Metaglue agents, 
which enormously adds to Metaglue's value as computational glue. We call the process of 
transforming previously existing programs into agents wrapping. 
Almost as much time has gone into formulating Metaglue's semantics as to programming 
the system itself. We sought to provide a focused set of primitives for managing systems 
of distributed, interacting agents and to avoid the temptation of creeping featurism. By 
stressing simplicity, anyone proficient in Java can pick up Metaglue very quickly, and the 
small number of new primitives makes it easy to learn, remember, and use the system. 
In the remainder of this discussion, it will be helpful to keep in mind that running a 
Metaglue system first involves starting Metaglue Virtual Machines on all the computers 
that are involved. Our machines are generally configured to start these when they are 
booted.3 

The Capabilities 
Metaglue offers the following capabilities, each of which we will address in turn: 

3 For reference, this has the computational overhead of running one Java Virtual Machine, which is close to 
unnoticeable on modern Pentium-based systems. 
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1. Configuration management 
2. Establish and maintain the configuration each agent specifies 
3. Establish communication channels between agents 
4. Maintain agent state 
5. Introduce and modify agents in a running system 
6. Manage shared resources 
7. Event broadcasting 
8. Support for debugging 

Metaglue has a powerful naming scheme for agents that is beyond the scope of this document. We will use 
here the simplest form of it, the name of the Interface file of an agent, which is in the Java class package 
format, e.g., an agent for controlling a television might be referenced by device.Television. 

1. Configuration Management 
Metaglue has an internal SQL database for managing information about agent's modifiable parameters 
(called Attributes), storing their internal persistent state, and giving agents fast, powerful database access.4 

Attributes contain information that might otherwise be hardcoded inside agents and difficult to modify, 
for example, what workstation the agent needs to run on or parameters that affect its operation. Metaglue has 
a web-based interface for modifying Attributes, which can be changed even while an agent is running. This 
is one of Metaglue's mechanisms for both configuring a system of agents and interacting with it while it is 
operational. 

This is code an agent would use to get its location Attribute from Metaglue's built in 
database: 

Attribute location = new Attribute("location"); 
System.out.println("I run on " + location.getValue()); 

2. Agent Configurations 
Metaglue agents can specify particular requirements that the system must insure are satisfied before they are 
willing to run. These can include the name of a particular computer they must be run on; specifications for 
particular types of hardware they require access to; and more abstract capabilities that must be available on 
whichever Metaglue Virtual Machine (MVM) they are run on. These are expressed with the tiedToO 
primitive, as in: 

tiedTo(location.getValue()); 
tiedTo(capability.FrameGrabber); 
tiedTo(device.Television); 

If an agent is started on an MVM that does not meet its stated requirements, Metaglue will move it 
somewhere else that does. If Metaglue needs to restart an agent due to localized hardware or software 
failure, it will attempt to find an alternative MVM on which to run the agent that also satisfies these 
requirements. (See item 5.) 

3. Agent Connections 

The use of an internal database helps enormously in dealing with Java's poor file access capabilities. 
Agents use the database rather than store information in files, which is particularly important because agents 
can move to different machines while they are running. 
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Because Metaglue is intended as computational glue, it needs to establish paths of 
communication between agents, regardless of where they are running. The reliesOn () 
primitive connects agent with capabilities they can request services from. For example, to 
use Hal's speech synthesizer, an agent might contain: 

Agent speechSynthesizer = reliesOn(speech.Synthesizer); 
speechSynthesizer.say("Hello! How are you?"); 

The reference to speech. Synthesizer refers to an abstract capability, not a particular agent. Because 
agents refer to each other by their capabilities and not directly by name, new agents can easily be added to 
the system that implement preexisting capabilities without modifying any of the agents that will make use of 
them. (A more sophisticated way of obtaining capabilities is described in the Metaglue resource manager 
below.) 
Metaglue will try to locate an agent that provides the requested capability on any of the 
system's computers' MVMs and return a reference to it to the caller. Metaglue has an 
internal directory called a Catalog that it uses to find agents once they are started. 
Metaglue agents automatically register their capabilities with the Catalog when they are 
run. 

If no agent offering this capability is found, Metaglue automatically starts one and invisibly insure that it 
continues running as long as it is in use. 
The reliesOn () primitive makes it very easy to interconnect agents with a single line 
of code. Reliance is also a transitive operation. For example, starting the single Hal demo 
agent results in the entire Hal system being loaded because of their chain of reliances. 
Also, because they have been formally relied upon, Metaglue will attempt to insure that 
they continue running indefinitely, as discussed below. 

4. Agent State 
Agents can use Metaglue's freeze () and defrost () primitives to store and 
subsequently retrieve their fields from Metaglue's internal SQL database. The standard 
way of doing this is having an agent directly freeze its state when it is shutting down (or at 
any other appropriate time), and subsequently defrost itself in its constructor the next time 
it is started up. Other aspects of an agent's state, e.g., its connections to other agents, are 
internally maintained by Metaglue and generally do not need to be specifically managed by 
the agents themselves. 
As of yet, we do not have a well-defined schema for capturing the global state of all the 
agents in a running Metaglue system. 

5. Modifying a running system 
Metaglue will attempt to keep a running system of agents alive.   If an agent is manually stopped, for 
example, during debugging, the agents that rely upon it will by default simply wait for it to return in the 
event they need to access it. When the user restarts the agent, it will reload its frozen state and simply pick 
up where it left off, first dealing with any pending requests from other agents. 
It is also possible to programmatically specify actions, other than simply waiting, that an 
agent can do if someone it relies upon is stopped. For example, it might temporarily 
switch to another active agent that offers the same capabilities. Metaglue's resource 
management can help the system in the event capabilities must be shared due to part of the 
system being unavailable. 
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If an agent dies because of unanticipated hardware or software failure, Metaglue will try to 
restart it automatically, switching to another MVM if necessary, but still meeting the 
agent's required configuration if possible. It is important to note that unanticipated crashes 
may cause state information to be lost, and agents who are sensitive to this should refuse to 
be automatically restarted. For example, an agent that controls Hal's lighting systems may 
not know whether the lights are on or off if it is restarted after a crash because the state 
information it defrosts may be inaccurate. However, in that case, it can simply ask Hal's 
vision agents whether they can see anything, and thereby determine the state of the lights 
in the room. An agent running part of an application, however, could be started out of 
sync with the rest of the system, and manual intervention may be required to correct the 
problem. 
Interestingly, the Metaglue system is itself recursively constructed out of a special set of 
Metaglue agents. These agents have the full functionality of the system available to them, 
so they can for example, use Hal's speech synthesizer to let users know of internal 
problems in the system and ask for help resolving them. 

6. Managing shared resources 
Among the largest and most complex systems in Metaglue is its resource manager. Before 
it existed, agents in Hal simply grabbed the resources they needed and configured them at 
will. That a resource management system was necessary became apparent when Hal 
developed to the point that its multiple applications conflicted with one another and could 
no longer be run simultaneously. Additionally, for an agent to simply rely on the resources 
it wants to use, it has to know both what resources exist and are available. As devices and 
other agents dynamically come and go in the system, this means that every agent would 
need to keep track of the different resources that offer the sets of capabilities it needs. We 
discussed above that agents may temporarily make use of substitutes if the agents they 
generally rely upon are unavailable. Where should that knowledge of possible alternatives 
come from? 
The resource system in Metaglue allows agents to request functionality at a very high- 
level, without being concerned with how it is provided or resolving resource conflicts 
among themselves. Metaglue has a hierarchical set of dealer agents that are responsible 
for distributing resources to the rest of the system. There are a wide assortment of 
different prototype dealer agents available, each of which has its own specified internal 
logic for performing allocation, substitution, etc. These dealers can be used directly by 
Metaglue programmers or extended to customize their operation. 
Dealers not only give out resources, but they can withdraw previously allocated ones to 
redistribute them, based on any of several priority and fairness schemes. For example, 
there are dealers in Hal for allocating televisions, video projectors, and displays in general. 
An agent must use the dealers to gain access to any of these. If a higher priority agent 
needs access to a particular display, it will be temporarily withdrawn from the agent who 
has allocated it until it becomes available again, at which point it will be given back. 
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7. Event Broadcasting 
In addition to agents making direct requests of one another through method calls, Metaglue 
agents can pass messages among themselves. Agents can register with other agents, 
including the Metaglue system agents, to find out about events going on in the system. 
For example, an agent in Hal interested in greeting people by name when they walk inside 
the room, simply registers with the vision-based Entry agent to request messages about 
entrance events where the identity of the person can be determined. When these events 
occur, it receives a message and uses the agent offering speech synthesis capability to say 
hello to them. 
We also use event broadcasts to notify groups of agents about context shifts in room 
applications to dynamically and uniformly modify Hal's behavior. 

8. Debugging 
Metaglue has a graphical interface for examining a running system of agents called the Catalog monitor.   It 
displays all running agents and their reliance interconnections. Clicking on an agent brings up a window in a 
read-eval-print loop, in which users can interactively call the agent's methods. 
Metaglue also has a logging facility to manage and centralize agents' textual output. This 
can be useful for programmers to watch the output of particular agents without worrying 
about where they are running or where their output streams are being printed. 
We have found these capabilities quite useful, but would still prefer source level 
debugging of remote agents, a dynamic object browser, and ways to set breakpoints over 
whole groups of agents simultaneously. At least some of these capabilities promise to be 
available shortly in commercial Java products and we hope to make use of them during 
Hal's continued development. 

Discussion 

Evaluating the merits of a programming language can defy objectivity. Nonetheless, 
Metaglue has been extraordinarily useful in building Hal, and it is highly doubtful Hal 
would have reached its present level of development with it. Metaglue is a very stable 
system, and we have left large assemblies of agents running for up to a week without any 
difficulties. (These systems were eventually stopped for development purposes.) 
We now reexamine each of the previously mentioned properties of IEs in the context of 
Metaglue. 

Distributed, modular systems need computational glue 
Metaglue not only provides a channel to interconnect Hal's components, but it also provides the means to 
build applications for Hal. Rather than use a special communication mechanism, such as CORBA or KQML, 
separate from the system's internal controller, Metaglue allows us to reduce the amount of infrastructure by 
providing for both communication and control with a much lighter-weight system. 

Resource management is essential 
The resource management system in Metaglue not only offers a wide range of default behaviors, but it is 
easily customizable through Java's class extension mechanism. It is among Metaglue's most developed 
systems and we are in the process of incorporating it into the applications that predated it. 
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Configurations change dynamically 
Metaglue offers several mechanisms for coping with dynamically changing systems. The Configuration 
Manager and Attribute system allows users to reconfigure agents while they are running. The fact that agents 
refer to each other by abstract capabilities means that new agents can be incorporated into a running system 
without modifying any of the agents that might rely upon them. Metaglue's ability to start and stop agents 
while leaving the rest of the system running allows us to dynamically "hotswap" components of a running 
computation. Finally, by substituting new resource managers into a running system, new functionality can be 
added that previously no agents were aware of. 

State is precious 
Metaglue offers support for persistent local state in agents via its freeze and defrost mechanisms. Notions of 
global state, however, remain illusive concepts. 

lEs model the parallelism of the real world 
Java is inherently multithreaded, which Metaglue inherits from it. Metaglue's resource management allows 
agents running in parallel to avoid conflicting with one another. The event broadcast mechanism also 
simplifies communication among interacting groups of software agents running simultaneously. 

Real-time response 
The amount of overhead Metaglue adds to Java is minimal. Our avoidance of 
heavyweight, specialized communication packages allows Metaglue agents to essentially 
run as quickly as Java's Remote Method Invocation system. Metaglue is now incorporated 
into "tight" loops in our code, along the most processor intensive critical paths, such as in 
our computer vision systems. The development of JIT compilers for Java has enormously 
reduced our need to place perceptory components of our system into external C-language 
libraries. 

Debugging is difficult 
Metaglue certainly makes it possible to debug distributed agents systems, but one can hope 
for more. There is reason to believe the Java community as a whole shares some of this 
interest and will takes steps in this direction. 

Future directions 
We are presently incorporating an expert system into Metaglue to allow more sophisticated reasoning about 
system configuration and resource management. We are also creating a machine learning extension to 
Metaglue, which will incorporate pieces of the system described in [6]. 
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